FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis.

Nat Immunol

Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 2OY, UK.

Published: April 2007

The survival of long-lived plasma cells, which produce most serum immunoglobulin, is central to humoral immunity. We found here that the inhibitory Fc receptor FcgammaRIIb was expressed on plasma cells and controlled their persistence in the bone marrow. Crosslinking FcgammaRIIb induced apoptosis of plasma cells, which we propose contributes to the control of their homeostasis and suggests a method for therapeutic deletion. Plasma cells from mice prone to systemic lupus erythematosus did not express FcgammaRIIb and were protected from apoptosis. Human plasmablasts expressed FcgammaRIIb and were killed by crosslinking, as were FcgammaRIIb-expressing myeloma cells. Our results suggest that FcgammaRIIb controls bone marrow plasma cell persistence and that defects in it may contribute to autoantibody production.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni1440DOI Listing

Publication Analysis

Top Keywords

plasma cells
16
bone marrow
12
fcgammariib controls
8
controls bone
8
marrow plasma
8
plasma cell
8
cell persistence
8
fcgammariib
6
plasma
6
cells
5

Similar Publications

Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.

Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.

View Article and Find Full Text PDF

Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain.

Mol Med

January 2025

Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.

Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.

View Article and Find Full Text PDF

The stability of kinetic-level convection cells (wherein the magnitude of macroscopic and microscopic velocities are of same order) is studied in a two-dimensional Yukawa liquid under the effect of microscopic velocity perturbations. Our numerical experiments demonstrate that for a given system aspect ratio β viz., the ratio of system length [Formula: see text] to its height [Formula: see text] and number of convective rolls initiated [Formula: see text], the fate of the convective cells is decided by [Formula: see text].

View Article and Find Full Text PDF

Postmenopausal women are at a higher risk of developing dyslipidemia and osteoporosis due to estrogen deficiency, necessitating regular vitamin D supplementation and the use of cholesterol inhibitors, respectively, to prevent these conditions. Despite current treatments, alternatives are needed to address both conditions simultaneously. Ergosterol, a precursor of vitamin D, is a fungal sterol converted to brassicasterol by 7-dehydrocholesterol reductase, a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D) into cholesterol.

View Article and Find Full Text PDF

Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!