Protein synthesis in mammalian cells requires initiation factor eIF3, an approximately 800-kDa protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 48 S initiation complex. The eIF3 complex also prevents premature association of the 40 and 60 S ribosomal subunits and interacts with other initiation factors involved in start codon selection. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. Since its initial characterization in the 1970s, the exact size, composition, and post-translational modifications of mammalian eIF3 have not been rigorously determined. Two powerful mass spectrometric approaches were used in the present study to determine post-translational modifications that may regulate the activity of eIF3 during the translation initiation process and to characterize the molecular structure of the human eIF3 protein complex purified from HeLa cells. In the first approach, the bottom-up analysis of eIF3 allowed for the identification of a total of 13 protein components (eIF3a-m) with a sequence coverage of approximately 79%. Furthermore 29 phosphorylation sites and several other post-translational modifications were unambiguously identified within the eIF3 complex. The second mass spectrometric approach, involving analysis of intact eIF3, allowed the detection of a complex with each of the 13 subunits present in stoichiometric amounts. Using tandem mass spectrometry four eIF3 subunits (h, i, k, and m) were found to be most easily dissociated and therefore likely to be on the periphery of the complex. It is noteworthy that none of these four subunits were found to be phosphorylated. These data raise interesting questions about the function of phosphorylation as it relates to the core subunits of the complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/mcp.M600399-MCP200 | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
INSERM, IMRBU955, Univ Paris Est Créteil, Créteil, France.
Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).
Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).
Plant Physiol
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.
The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.
View Article and Find Full Text PDFSci Immunol
January 2025
Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!