The cytoplasmic sides of transmembrane helices 3 and 6 of G-protein-coupled receptors are connected by a network of ionic interactions that play an important role in maintaining its inactive conformation. To investigate the role of such a network in rhodopsin structure and function, we have constructed single mutants at position 134 in helix 3 and at positions 247 and 251 in helix 6, as well as combinations of these to obtain double mutants involving the two helices. These mutants have been expressed in COS-1 cells, immunopurified using the rho-1D4 antibody, and studied by UV-visible spectrophotometry. Most of the single mutations did not affect chromophore formation, but double mutants, especially those involving the T251K mutant, resulted in low yield of protein and impaired 11-cis-retinal binding. Single mutants E134Q, E247Q, and E247A showed the ability to activate transducin in the dark, and E134Q and E247A enhanced activation upon illumination, with regard to wild-type rhodopsin. Mutations E247A and T251A (in E134Q/E247A and E134Q/T251A double mutants) resulted in enhanced activation compared with the single E134Q mutant in the dark. A role for Thr(251) in this network is proposed for the first time in rhodopsin. As a result of these mutations, alterations in the hydrogen bond interactions between the amino acid side chains at the cytoplasmic region of transmembrane helices 3 and 6 have been observed using molecular dynamics simulations. Our combined experimental and modeling results provide new insights into the details of the structural determinants of the conformational change ensuing photoactivation of rhodopsin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M611091200DOI Listing

Publication Analysis

Top Keywords

double mutants
12
interactions amino
8
cytoplasmic region
8
transmembrane helices
8
single mutants
8
mutants involving
8
enhanced activation
8
mutants
6
rhodopsin
5
critical role
4

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

DNA Damage Response Mutants Challenged with Genotoxic Agents-A Different Experimental Approach to Investigate the and Genes.

Genes (Basel)

January 2025

Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.

DNA damage response (DDR) is a highly conserved and complex signal transduction network required for preserving genome integrity. DNA repair pathways downstream of DDR include the tyrosyl-DNA phosphodiesterase1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine residue of topoisomerase I (TopI) and 3'-phosphate end of DNA. A small TDP1 subfamily, composed of TDP1α and TDP1β, is present in plants.

View Article and Find Full Text PDF

Standardization of the Agar Plate Method for Bacteriophage Production.

Antibiotics (Basel)

December 2024

Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.

The growing threat of antimicrobial resistance (AMR), exacerbated by the COVID-19 pandemic, highlights the urgent need for alternative treatments such as bacteriophage (phage) therapy. Phage therapy offers a targeted approach to combat bacterial infections, particularly those resistant to conventional antibiotics. This study aimed to standardize an agar plate method for high-mix, low-volume phage production, suitable for personalized phage therapy.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV), an oncogenic gamma-herpesvirus, belongs to group 1 carcinogen and is implicated in various cancers, including gastric cancer. Aurora Kinase A is a major mitotic protein kinase that regulates mitotic progression; overexpression and hyperactivation of AURKA commonly promote genomic instability in many tumours. However, the relationship of functional residues of AURKA and EBV in gastric cancer progression remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!