Matrix metalloproteinases (MMPs) have been implicated in the process of neovascularization. However, the exact roles of individual MMPs in vessel formation are poorly understood. To study the putative role of MMP-2 in ischemia-induced neovascularization, a hindlimb ischemia model was applied to MMP-2(+/+) and MMP-2(-/-) mice. Serial laser Doppler blood-flow analysis revealed that the recovery of the ischemic/normal blood-flow ratio in MMP-2(-/-) young and old mice remained impaired throughout the follow-up period. At day 35, microangiography and anti-l-lectin immunohistochemical staining revealed lesser developed collateral vessels and capillary formation in both old and young MMP-2(-/-) mice compared with the age-matched MMP-2(+/+) mice. An aortic-ring culture assay showed a markedly impaired angiogenic response in MMP-2(-/-) mice, which was partially recovered by supplementation of the culture medium with recombinant MMP-2. Aorta-derived endothelial cells or bone marrow-derived endothelial progenitor cell (EPC)-like c-Kit(+) cells from MMP-2(-/-) showed marked impairment of invasive or/and proliferative abilities. At day 7, plasma and ischemic tissues of vascular endothelial growth factor protein were reduced in MMP-2(-/-). Flow cytometry showed that the numbers of EPC-like CD31(+)c-Kit(+) cells in peripheral blood markedly decreased in MMP-2-deficient mice. Transplantation of bone marrow-derived mononuclear cells from MMP-2(+/+) mice restored neovascularization in MMP-2(-/-) young mice. These data suggest that MMP-2 deficiency impairs ischemia-induced neovascularization through a reduction of endothelial cell and EPC invasive and/or proliferative activities and EPC mobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000260801.12916.b5DOI Listing

Publication Analysis

Top Keywords

ischemia-induced neovascularization
12
mmp-2-/- mice
12
mice
9
mmp-2-/- young
8
young mice
8
mmp-2+/+ mice
8
bone marrow-derived
8
mmp-2-/-
7
neovascularization
5
mechanisms underlying
4

Similar Publications

MicroRNAs (miRs) regulate physiological and pathological processes, including ischemia-induced angiogenesis and neovascularization. They can be transferred between cells by extracellular vesicles (EVs). However, the specific miRs that are packaged in EVs released from skeletal muscles, and how this process is modulated by ischemia, remain to be determined.

View Article and Find Full Text PDF

Human interleukin-33 (IL-33) is a 270 amino acid protein that belongs to the IL-1 cytokine family and plays an important role in various inflammatory disorders. Neutrophil proteases (Cathepsin G and Elastase) and mast cell proteases (tryptase and chymase) regulate the activity of IL-33 by processing full-length IL-33 into its mature form. There is little evidence on the role of these mature forms of IL-33 in retinal endothelial cell signaling and pathological retinal angiogenesis.

View Article and Find Full Text PDF

Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia.

Arterioscler Thromb Vasc Biol

August 2024

Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA.

Background: Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle.

View Article and Find Full Text PDF
Article Synopsis
  • * This study aimed to analyze the gene expression of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS to understand the molecular mechanisms involved in stroke and recovery.
  • * Out of 2469 differentially expressed genes, key pathways related to cell proliferation, migration, and angiogenesis were identified, suggesting an ongoing angiogenic process in patients even after the stroke event, which could inform future treatment strategies.
View Article and Find Full Text PDF

We aimed to explore microRNA (miR)-320's impacts on learning and memory in mice with vascular cognitive impairment induced via cerebral ischemia. After establishment of a cerebral small vessel disease (CSVD) cognitive impairment model, application of corresponding treatment methods was in the model mice to inject miR-320 antagomir/agomir and their negative controls to the lateral ventricles: Test of the learning and memory abilities of mice was conducted; Detection of oxidative stress, inflammation, miR-320, Vascular endothelial growth factor (VEGF) and endostatin (ES) was implemented; Taking mouse hippocampal neuron cells was to detect the cell advancement. MiR-320 was elevated in the CSVD model; MiR-320 was negatively linked with the learning and memory abilities of mice; Repressing miR-320 was available to memorably elevate the learning and memory abilities of CSVD mice; Depressing miR-320 clearly drove CSVD mouse neovascular protein VEGF, but reduced inflammation, oxidative stress response and ES; Restraining miR-320 was available to contribute to mouse neuronal cell advancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!