During a critical period of postnatal development the epileptogenic focus is thought to be of cortical origin. We used immunohistochemistry and Western blotting to elucidate potential mechanisms underlying an increased state of susceptibility to seizures in immature animals. Distribution patterns of N-methyl-D-aspartic acid (NMDA) (NR1 and NR2A/B) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) (GluR1 and GluR2) subunits were analyzed in retrosplenial, parietal and temporal cortices during the first two postnatal weeks following three episodes of status-epilepticus. Rat pups were injected three times with kainic acid (3x KA) on P6, P9, and P13 and subsequently sacrificed 48 h after the third seizure. Cortical electroencephalography (EEG) showed increased number of spikes and bursts of longer duration after 3x KA. Immunodensity measurements after 3x KA revealed a robust increase in NR2A/B labeling specific to cortical layer V throughout the retrosplenial, parietal, and temporal cortices, with no changes noted in piriform cortex. NR1 layer V immunoreactivity was also simultaneously increased in serial sections but to a lesser degree; heightened immunodensities were specific to retrosplenial and temporal cortices. The NR1:NR2 ratio was decreased in cortical layer V of the temporal and retrosplenial cortices but not in parietal cortex despite elevated immunoreactivity. Steady levels of GluR1 and GluR2 subunits were noted in all cortical areas studied in the same animals. Thus, recurrent perinatal seizures led to selective and layer-specific increases in NMDA receptor proteins. These changes may be responsible for lowering the seizure threshold in deeper cortical areas and eventually contribute to the cortical epileptogenic focus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2007.01.110 | DOI Listing |
Front Mol Neurosci
December 2024
UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal.
Front Neurol
December 2024
Department of Diagnostic Radiology, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
Objective: This investigation aimed to elucidate alterations in metabolic brain network connectivity in drug-resistant mesial temporal lobe epilepsy (DR-MTLE) patients, relating these changes to varying surgical outcomes.
Methods: A retrospective cohort of 87 DR-MTLE patients who underwent selective amygdalohippocampectomy was analyzed. Patients were categorized based on Engel surgical outcome classification into seizure-free (SF) or non-seizure-free (NSF) groups.
Clin Neurophysiol
December 2024
Unidad Ejecutora para el Estudio de las Neurociencias y Sistemas Complejos (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Anatomía Viviente, 3ra Cátedra de Anatomía Normal, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
Objective: To investigate the neural networks involved in idiomatic expressions (IE) comprehension in healthy controls and patients with drug-resistant temporal lobe epilepsy (TLE), with a functional magnetic resonance imaging (fMRI) task.
Methods: Thirty-two patients with TLE (left or right) and seventeen healthy controls were evaluated. Activated nodes in the fMRI task were defined as Regions of Interest (ROIs) for a posterior functional connectivity analysis.
Brain Commun
December 2024
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA.
Co-pathology is frequent in Lewy body disease, which includes clinical diagnoses of both Parkinson's disease and dementia with Lewy bodies. Measuring concomitant pathology can improve clinical and research diagnoses and prediction of cognitive trajectories. Tau PET imaging may serve a dual role in Lewy body disease by measuring cortical tau aggregation as well as assessing dopaminergic loss attributed to binding to neuromelanin within substantia nigra.
View Article and Find Full Text PDFCortex
December 2024
Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France.
The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!