We report on the mitochondrial DNA (mtDNA) analysis of the supposed remains of Francesco Petrarca exhumed in November 2003, from the S. Maria Assunta church, in Arquà Padua (Italy) where he died in 1374. The optimal preservation of the remains allowed the retrieval of sufficient mtDNA for genetic analysis. DNA was extracted from a rib and a tooth and mtDNA sequences were determined in multiple clones using the strictest criteria currently available for validation of ancient DNA sequences, including independent replication. MtDNA sequences from the tooth and rib were not identical, suggesting that they belonged to different individuals. Indeed, molecular gender determination showed that the postcranial remains belonged to a male while the skull belonged to a female. Historical records indicated that the remains were violated in 1630, possibly by thieves. These results are consistent with morphological investigations and confirm the importance of integrating molecular and morphological approaches in investigating historical remains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2007.01.020DOI Listing

Publication Analysis

Top Keywords

genetic analysis
8
francesco petrarca
8
mtdna sequences
8
remains
6
analysis skeletal
4
skeletal remains
4
remains attributed
4
attributed francesco
4
petrarca report
4
report mitochondrial
4

Similar Publications

Background: Epidemiological associations between kidney stone disease (KSD) and gastrointestinal disorders have been reported, and intestinal homeostasis plays a critical role in stone formation. However, the underlying intrinsic link is not adequately understood. This study aims to investigate the genetic associations between these two types of diseases.

View Article and Find Full Text PDF

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.

View Article and Find Full Text PDF

Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.

View Article and Find Full Text PDF

The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!