Netrin is an evolutionarily conserved axon guidance molecule that has both axonal attraction and repulsion activities. In Caenorhabditis elegans, Netrin/UNC-6 is secreted by ventral cells, attracting some axons ventrally and repelling some axons, which extend dorsally. One axon guided by UNC-6 is that of the HSN neuron. The axon guidance process for HSN neurons is complex, consisting of ventral growth, dorsal growth, branching, second ventral growth, fasciculation with ventral nerve cords, and then anterior growth. The vulval precursor cells (VPC) and the PVP and PVQ neurons are required for the HSN axon guidance; however, the molecular mechanisms involved are completely unknown. In this study, we found that the VPC strongly expressed UNC-6 during HSN axon growth. Silencing of UNC-6 expression in only the VPC, using a novel tissue-specific RNAi technique, resulted in abnormal HSN axon guidance. The expression of Netrin/UNC-6 by only the VPC in unc-6 null mutants partially rescued the HSN ventral axon guidance. Furthermore, the expression of Netrin/UNC-6 by the VPC and the ventral nerve cord (VNC) in unc-6 null mutants restored the complex HSN axon guidance. These results suggest that UNC-6 expressed by the VPC and the VNC cooperatively regulates the complex HSN axon guidance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2007.01.028DOI Listing

Publication Analysis

Top Keywords

axon guidance
32
hsn axon
20
axon
10
hsn
9
unc-6 expression
8
vulval precursor
8
precursor cells
8
caenorhabditis elegans
8
guidance
8
hsn neurons
8

Similar Publications

Macroscale neuroimaging results have revealed significant differences in the structural and functional connectivity patterns of gyri and sulci in the primate cerebral cortex. Despite these findings, understanding these differences at the molecular level has remained challenging. This study leverages a comprehensive dataset of whole-brain in situ hybridization (ISH) data from marmosets, with updates continuing through 2024, to systematically analyze cortical folding patterns.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

Establishing functionally segregated dopaminergic circuits.

Trends Neurosci

January 2025

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways.

View Article and Find Full Text PDF

Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.

View Article and Find Full Text PDF

Systematic dissection of pleiotropic loci and critical regulons in excitatory neurons and microglia relevant to neuropsychiatric and ocular diseases.

Transl Psychiatry

January 2025

Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Advancements in single-cell multimodal techniques have greatly enhanced our understanding of disease-relevant loci identified through genome-wide association studies (GWASs). To investigate the biological connections between the eye and brain, we integrated bulk and single-cell multiomic profiles with GWAS summary statistics for eight neuropsychiatric and five ocular diseases. Our analysis uncovered five latent factors explaining 61.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!