Rationale: Our goal was to determine the frequency of repeated intracarotid amobarbital test (IAT) at our center and to estimate the retest reliability of the IAT for both language and memory lateralization.

Methods: A total of 1,249 consecutive IATs on 1,190 patients were retrospectively reviewed for repeat tests.

Results: In 4% of patients the IAT was repeated in order to deliver satisfactory information on either language or memory lateralization. Reasons for repetition included obtundation and inability to test for memory lateralization, inability to test for language lateralization, no hemiparesis during first test, no aphasia during first test, atypical vessel filling, and bleeding complications from the catheter insertion site. Language lateralization was reproduced in all but one patient. Repeated memory test results were less consistent across tests, and memory lateralization was unreliable in 63% of the patients.

Discussion: In spite of test limitations by a varying dose of amobarbital, crossover of amobarbital from one side to the other, testing of both hemispheres on the same day, practice effects, unblinded observers, fluctuating cooperation of the patients, and a biased sample of patients language lateralization was reproduced in all but one patient. In contrast, repeated memory test results were frequently contradictory. Memory results on IAT therefore seem much less robust than the results of language testing. Gain of reliable information versus the risks of complications and failed tests has to be considered when a patient is subjected to an IAT.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1528-1167.2007.00982.xDOI Listing

Publication Analysis

Top Keywords

memory lateralization
12
language lateralization
12
repeated intracarotid
8
intracarotid amobarbital
8
test
8
language memory
8
inability test
8
lateralization reproduced
8
reproduced patient
8
repeated memory
8

Similar Publications

Background: Inhibitory interneurons normally regulate neural networks underlying memory and cognition, but are disrupted in Alzheimer's disease. Proper interneuron activity reduces amyloid-beta, whereas hyperexcitability elevates amyloid levels. Still, the underlying pathologic processes mediating interneuron dysfunction remain unknown.

View Article and Find Full Text PDF

Background: How tauopathy disrupts direct entorhinal cortex (EC) inputs to CA1 and their plasticity is understudied, despite its critical role in memory. Moreover, dysfunction of lateral EC (LEC) input is less clear, despite its relevance to early Alzheimer's disease pathogenesis. Here we examined how tau impacts long-term potentiation (LTP) of LEC→CA1 input in a transgenic model of tauopathy.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Inclusions of TAR DNA binding protein of 43kDa (TDP-43) constitute the main characteristic pathology in the majority (∼97%) of amyotrophic lateral sclerosis (ALS) cases and approximately 50% of patients with frontotemporal lobar degeneration (FTLD). TDP-43 is a nuclear RNA binding protein; however, in disease, it becomes hyperphosphorylated and/or insoluble, hindering its nuclear function in maintaining RNA homeostasis. Importantly, the incidence of TDP-43 proteinopathy extends to aging brains (LATE) and may be concomitant with Alzheimer's disease (AD) neuropathological changes (LATE/AD) in up to 70% of AD patients.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Physiopathology in Aging Laboratory (LIM-22), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.

Background: Excessive daytime sleepiness is a common and early symptom of Alzheimer's disease (AD). The subcortical wake-promoting neurons in the lateral hypothalamic area, tuberomammillary nucleus (TMN), and locus coeruleus synchronize to maintain wakefulness/arousal. Although significant neuronal decline occurs in wake-promoting regions, the TMN histaminergic neurons remain relatively more intact than orexinergic and nor-adrenergic neurons.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Cell Biology and Pathology, New York, NY, USA.

Background: Possession of the APOE4 allele is the strongest genetic risk factor for developing the sporadic form of Alzheimer's disease (AD). Studies investigating APOE4's associated AD risk have largely centered on APOE4's propensity to regulate the deposition of extracellular amyloid beta plaques. More recent attempts to characterize APOE4's role in AD have brought into question the role APOE4 may possess in modulating the pathogenesis of intracellular tau tangles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!