Purpose: It is generally accepted that blood-brain barrier (BBB) failure occurs as a result of CNS diseases, including epilepsy. However, evidences also suggest that BBB failure may be an etiological factor contributing to the development of seizures.
Methods: We monitored the onset of seizures in patients undergoing osmotic disruption of BBB (BBBD) followed by intraarterial chemotherapy (IAC) to treat primary brain lymphomas. Procedures were performed under barbiturate anesthesia. The effect of osmotic BBBD was also evaluated in naive pigs.
Results: Focal motor seizures occurred immediately after BBBD in 25% of procedures and originated contralateral to the hemisphere of BBBD. No seizures were observed when BBB was not breached and only IAC was administered. The only predictors of seizures were positive indices of BBBD, namely elevation of serum S100beta levels and computed tomography (CT) scans. In a porcine model of BBBD, identical procedures generated an identical result, and sudden behavioral and electrographic (EEG) seizures correlated with successful BBB disruption. The contribution of tumor or chemotherapy to acute seizures was therefore excluded.
Conclusion: This is the first study to correlate extent of acute BBB openings and development of seizures in humans and in a large animal model of BBB opening. Acute vascular failure is sufficient to cause seizures in the absence of CNS pathologies or chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135474 | PMC |
http://dx.doi.org/10.1111/j.1528-1167.2007.00988.x | DOI Listing |
Neurooncol Adv
January 2025
Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA.
The blood-brain barrier (BBB) remains an obstacle for delivery of chemotherapeutic agents to gliomas. High grade and recurrent gliomas continue to portend a poor prognosis. Multiple methods of bypassing or manipulating the BBB have been explored, including hyperosmolar therapy, convection-enhanced delivery (CED), laser-guided interstitial thermal therapy (LITT), and Magnetic Resonance Guided Focused Ultrasound (MRgFUS) to enhance delivery of chemotherapeutic agents to glial neoplasms.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Departments of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Migraine, a serious neurological disease that affects millions of people worldwide, is one of the most considerable burdens on the healthcare system and has significant economic implications. Even though various treatment methods are available, including medication, lifestyle changes, and behavioral therapy, many migraine sufferers do not receive adequate relief or experience intolerable side effects. Hence, the present review aims to evaluate the nanoformulation regarding migraine therapy.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Oncology, Suining Central Hospital, Suining, Sichuan, China.
Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.
View Article and Find Full Text PDFFront Immunol
January 2025
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT.
Background: Treatment-related changes may occur due to radiation and temozolomide in glioblastoma and can mimic tumor progression on conventional MRI. DCE-MRI enables quantification of the extent of blood-brain barrier (BBB) disruption, providing information about areas of suspicious postcontrast T1 enhancement. We compared DCE-MRI processing methods for distinguishing true disease progression from pseudoprogression in high-grade gliomas (HGGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!