A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. | LitMetric

Numerous growth factors, peptides, and small molecules are being developed for bone tissue engineering. The optimal dosing, stability, and bioactivity of these biological molecules are likely influenced by the carrier biomaterial. Efficient evaluation of various formulations will require objective evaluation of in vitro culture systems and in vivo regeneration models. The objective of this paper is to examine the utility of microcomputed tomography (microCT) over conventional techniques in the evaluation of the bone morphogenetic protein-2 (BMP-2) dose response effect in a three-dimensional (3D) in vitro culture system and in an established calvarial defect model. Cultured MC3T3-E1 osteoblasts displayed increased cellular density, extracellular matrix (ECM) production, and mineralization on 3D poly(lactic-co-glycolic acid) (PLGA) scaffolds in a BMP-2 dose dependent manner. MicroCT revealed differences in shape and spatial organization of mineralized areas, which would not have been possible through conventional alizarin red staining alone. Additionally, BMP-2 (doses of 30 to 240 ng/mm(3)) was grafted into 5 mm critical sized rat calvarial defects, where increased bone regeneration was observed in a dose dependent manner, with higher doses of BMP-2 inducing greater bone area, volume, and density. The data revealed the utility of microCT analysis as a beneficial addition to existing techniques for objective evaluation of bone tissue engineering and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2006.0141DOI Listing

Publication Analysis

Top Keywords

bmp-2 doses
8
critical sized
8
sized rat
8
rat calvarial
8
calvarial defects
8
bone tissue
8
tissue engineering
8
objective evaluation
8
vitro culture
8
evaluation bone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!