Predicting nuclear localization.

J Proteome Res

ARC Centre for Complex Systems, School of Information Technology and Electrical Engineering, University of Queensland, QLD 4072, Australia.

Published: April 2007

Nuclear localization of proteins is a crucial element in the dynamic life of the cell. It is complicated by the massive diversity of targeting signals and the existence of proteins that shuttle between the nucleus and cytoplasm. Nevertheless, a majority of subcellular localization tools that predict nuclear proteins have been developed without involving dual localized proteins in the data sets. Hence, in general, the existing models are focused on predicting statically nuclear proteins, rather than nuclear localization itself. We present an independent analysis of existing nuclear localization predictors, using a nonredundant data set extracted from Swiss-Prot R50.0. We demonstrate that accuracy on truly novel proteins is lower than that of previous estimations, and that existing models generalize poorly to dual localized proteins. We have developed a model trained to identify nuclear proteins including dual localized proteins. The results suggest that using more recent data and including dual localized proteins improves the overall prediction. The final predictor NUCLEO operates with a realistic success rate of 0.70 and a correlation coefficient of 0.38, as established on the independent test set. (NUCLEO is available at: http://pprowler.itee.uq.edu.au.).

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr060564nDOI Listing

Publication Analysis

Top Keywords

nuclear localization
16
dual localized
16
localized proteins
16
nuclear proteins
12
proteins
10
proteins developed
8
proteins data
8
existing models
8
including dual
8
nuclear
6

Similar Publications

Selective breeding is a potent method for developing strains with enhanced traits. This study compared the growth performance and stress responses of the genetically improved Abbassa Nile tilapia strain (G9; GIANT-G9) with a local commercial strain over 12 weeks, followed by exposure to stressors including high ammonia (10 mg TAN/L), elevated temperature (37 °C), and both for three days. The GIANT-G9 showed superior growth, including greater weight gain, final weight, length gain, specific growth rate, and protein efficiency ratio, as well as a lower feed conversion ratio and condition factor compared to the commercial strain.

View Article and Find Full Text PDF

Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons.

View Article and Find Full Text PDF

Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives.

J Am Chem Soc

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries.

View Article and Find Full Text PDF

Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction.

Hum Mol Genet

January 2025

Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China.

Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!