A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidation of H2 and CO over ion-exchanged X and Y zeolites. | LitMetric

Oxidation of H2 and CO over ion-exchanged X and Y zeolites.

J Am Chem Soc

Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4741, USA.

Published: March 2007

Zeolites X and Y exchanged with Group IA cations were synthesized by aqueous ion exchange of NaX and NaY and used as catalysts in the oxidation of H2 and CO at temperatures ranging from 473 to 573 K. The CsX zeolite was the most active material of the series for both reactions whereas HX was the least active. Moreover, the oxidation of CO in H2 was very selective (approximately 80%) over the alkali-metal exchanged materials. Isotopic transient analysis of CO oxidation during steady-state reaction at 573 K was used to evaluate the coverage of reactive carbon-containing intermediates that lead to product as well as the pseudo-first-order rate constant of the reaction. A factor of 4 enhancement in activity achieved by exchanging Cs for Na was attributed to a higher coverage of reactive intermediates in CsX because the pseudo-first-order rate constant was nearly same for the two materials (approximately 0.7 s(-1)). The number of reactive intermediates on both materials was orders of magnitude below the number of alkali metal cations in the zeolites but was similar to the number of impurity Fe atoms in the samples. Because the trend in Fe impurity loading was the same as that for oxidation activity, a role of transition metal impurities in zeolite oxidation catalysis is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0671520DOI Listing

Publication Analysis

Top Keywords

coverage reactive
8
pseudo-first-order rate
8
rate constant
8
reactive intermediates
8
oxidation
6
oxidation ion-exchanged
4
ion-exchanged zeolites
4
zeolites zeolites
4
zeolites exchanged
4
exchanged group
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!