A novel method is reported for rapid protein identification by the analysis of tryptic peptides using desorption electrospray ionisation (DESI) coupled with hyphenated ion mobility spectrometry and quadrupole time-of-flight mass spectrometry (IMS/Q-ToF-MS). Confident protein identification is demonstrated for the analysis of tryptically digested bovine serum albumin (BSA), with no sample pre-treatment or clean-up. Electrophoretic ion mobility separation of ions generated by DESI allowed examination of charge-state and mobility distributions for tryptic peptide mixtures. Selective interrogation of singly charged ions allowed isobaric peptide responses to be distinguished, along with a reduction in spectral noise. The mobility-selected singly charged peptide responses were presented as a pseudo-peptide mass fingerprint (p-PMF) for protein database searching. Comparative data are shown for electrospray ionisation (ESI) of the BSA digest, without sample clean-up, from which confident protein identification could not be made. Implications for the robustness of the DESI method, together with potential insights into mechanisms for DESI of proteolytic digests, are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.2941 | DOI Listing |
Environ Sci Process Impacts
January 2025
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.
View Article and Find Full Text PDFJ Mass Spectrom
February 2025
FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA.
Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.
Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).
Zhongguo Zhong Yao Za Zhi
December 2024
Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to rapidly identify the chemical components in Dracocephalum moldavica, and UPLC was employed to determine the content of its main components. MS analysis was performed using an electrospray ionization(ESI) source and data were collected in the negative ion mode. By comparing the retention time and mass spectra of reference compounds, and using a self-built compound database and the PubChem database, 68 compounds were identified from D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!