Purpose: We hypothesized that combining pre- and postsynaptic quantitative information about the dopaminergic system would provide a higher diagnostic accuracy in the differential diagnosis of parkinsonism than specific striatal D(2) receptor binding alone. Therefore, the aim of the study was to introduce new semi-quantitative parameters and evaluate their ability to discriminate between Parkinson's disease (IPS) and non-idiopathic parkinsonian syndromes (non-IPS).

Methods: In 100 patients (69 IPS, 31 non-IPS), postsynaptic [(123)I]IBZM and presynaptic [(123)I]FP-CIT SPECT scans were evaluated by observer-independent techniques. The diagnostic performances of striatal dopamine transporter (DAT) and D(2) receptor binding, their respective asymmetries, and a combination of pre- and postsynaptic asymmetry were evaluated with ROC analyses. A logistic regression model was generated combining factors to calculate the probability for each patient of belonging to either diagnostic group.

Results: D(2) receptor binding provided a sensitivity of 87.1% and a specificity of 72.5% with an area under the curve (AUC) of 0.866. The AUCs of other single parameters were lower than that of D(2) binding. A gain of diagnostic power (p = 0.026) was reached with a model combining pre- and postsynaptic asymmetries and D(2) binding (sensitivity 90.3%, specificity 73.9%, AUC 0.893).

Conclusion: The combination of quantitative parameters of presynaptic DAT and postsynaptic D(2) receptor binding demonstrates superior diagnostic power in the differentiation of patients with IPS and non-IPS than the established approach based on D(2) binding alone. Striatal D(2) receptor binding and the combination of DAT and IBZM binding asymmetries are the factors contributing most in separating these diagnostic groups.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-007-0375-8DOI Listing

Publication Analysis

Top Keywords

receptor binding
20
pre- postsynaptic
16
binding
9
dopaminergic system
8
diagnostic accuracy
8
accuracy differential
8
differential diagnosis
8
combining pre-
8
striatal receptor
8
patients ips
8

Similar Publications

Disruptive multiple cell death pathways of bisphenol-A.

Toxicol Mech Methods

January 2025

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India.

Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware.

View Article and Find Full Text PDF

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!