The type 1 PTH/PTH-related peptide receptor (PTH1R) is a class B G protein-coupled receptor that demonstrates immunoreactivity in the nucleus as well as cytoplasm of target cells. Our previous studies on the PTH1R have shown that it associates with the importin family of transport regulatory proteins. To investigate the role of the importins in PTH1R nuclear import, we used small interfering (si)RNA technology to knock down the expression of importin-beta in the mouse osteoblast-like cell line, MC3T3-E1. Immunofluorescence microscopy as well as ligand blotting for PTH1R in nuclear fractions of importin-beta siRNA-treated cells demonstrated a decrease in nuclear localization of the PTH1R in comparison with control cells. Under normal culture conditions, PTH1R is present in both the nucleus and cytoplasm of cells. Serum starvation favors nuclear localization of PTH1R, whereas returning cells to serum or treatment with PTH-related peptide induced its cytoplasmic localization. To address the nuclear export of PTH1R, interactions between PTH1R and chromosomal region maintenance 1 (CRM1) were investigated. PTH1R and CRM1 coimmunoprecipitated from MC3T3-E1 cells, suggesting that CRM1 and PTH1R form a complex in vivo. After treatment with leptomycin B, a specific inhibitor of CRM1-mediated nuclear export, PTH1R accumulated in the nucleus. Taken together, our studies show that PTH1R shuttles from the nucleus to the cytoplasm under normal physiological conditions and that this nuclear-cytoplasmic transport is dependent upon importin-alpha/beta and CRM1.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-0157DOI Listing

Publication Analysis

Top Keywords

pth1r
15
pth1r nuclear
12
receptor pth1r
8
chromosomal region
8
region maintenance
8
studies pth1r
8
nuclear localization
8
localization pth1r
8
nucleus cytoplasm
8
cells serum
8

Similar Publications

Jansen metaphyseal chondrodysplasia (JMC) is an ultra-rare disorder caused by constitutive activation of parathyroid hormone type 1 receptor (PTH1R). We sought to characterize the craniofacial phenotype of patients with the disease. Six patients with genetically confirmed JMC underwent comprehensive craniofacial phenotyping revealing a distinct facial appearance that prompted a cephalometric analysis demonstrating a pattern of mandibular retrognathia.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Key Interaction Changes Determine the Activation Process of Human Parathyroid Hormone Type 1 Receptor.

J Am Chem Soc

January 2025

Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.

The parathyroid hormone type 1 receptor (PTH1R) plays a crucial role in modulating various physiological functions and is considered an effective therapeutic target for osteoporosis. However, a lack of detailed molecular and energetic information about PTH1R limits our comprehensive understanding of its activation process. In this study, we performed computational simulations to explore key events in the activation process, such as conformational changes in PTH1R, Gs protein coupling, and the release of guanosine diphosphate (GDP).

View Article and Find Full Text PDF

Negative feedback between PTH1R and IGF1 through the Hedgehog pathway in mediating craniofacial bone remodeling.

JCI Insight

December 2024

State Key Laboratory of Oral Diseases, National Center for Stomatology, Nat, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Regeneration of orofacial bone defects caused by inflammatory-related diseases or trauma remains an unmet challenge. Parathyroid hormone 1 receptor (PTH1R) signaling is a key mediator of bone remodeling whereas the regulatory mechanisms of PTH1R signaling in oral bone under homeostatic or inflammatory conditions have not been demonstrated by direct genetic evidence. Here we observed that deletion of PTH1R in Gli1+-progenitors led to increased osteogenesis and osteoclastogenesis.

View Article and Find Full Text PDF

PTH1R Suppressed Apoptosis of Mesenchymal Progenitors in Mandibular Growth.

Int J Mol Sci

November 2024

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.

Genetic abnormalities of the parathyroid hormone 1 receptor (PTH1R) lead to profound craniomaxillofacial bone and dentition defects on account of inappropriate tissue metabolism and cellular differentiation. The coordinated activity of differentiation and viability in bone cells is indispensable for bone metabolism. Recent research demonstrates mesenchymal progenitors are responsive to PTH1R signaling for osteogenic differentiation, whereas the effect of PTH1R on cellular survival remains incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!