Background: Myocardial angiogenesis after the systemic administration of basic fibroblast growth factor or vascular endothelial growth factor at high therapeutic doses has been implicated in the occurrence of side effects that may undermine their safety. The aim of this study was to investigate the angiogenic effects of the intramyocardial administration of recombinant human basic fibroblast growth factor or vascular endothelial growth factor protein, at low doses, in the infarcted rabbit myocardium.

Methods And Results: Twenty-five New Zealand White rabbits were divided into five groups (n=5) and subjected to coronary artery ligation after lateral thoracotomy, inducing acute myocardial infarction. Five minutes later, the following substances were injected intramyocardially into the infarcted area: (a) normal saline (controls); (b) 6.25 or 12.5 mug of recombinant human basic fibroblast growth factor protein (basic fibroblast growth factor-1 group or basic fibroblast growth factor-2 group); or (c) 5 or 10 microg of recombinant human vascular endothelial growth factor 165 protein (vascular endothelial growth factor-1 group or vascular endothelial growth factor-2 group). On the 21st postoperative day, the animals were euthanized, and their hearts were subjected to histopathological examination and immunohistochemical assessment of vascular density in the infarcted area. The alkaline phosphatase anti-alkaline phosphatase procedure and the primary monoclonal antibody JC70 were used. Histopathological examination confirmed the induction of myocardial infarction. Vascular density was significantly increased (P<.004) in all treatment groups (in mean+/-S.E. vessels/x 200 optical field: basic fibroblast growth factor-1: 85.8+/-10.9; basic fibroblast growth factor-2: 76.6+/-3.7; vascular endothelial growth factor-1: 73.4+/-3.2; vascular endothelial growth factor-2: 89.5+/-5.2) compared to that in controls (58.9+/-4.9 vessels/x 200 optical field). Vascular density in the vascular endothelial growth factor-2 group was significantly higher than that in the vascular endothelial growth factor-1 group (P<.001).

Conclusions: Low doses of recombinant human basic fibroblast growth factor or vascular endothelial growth factor protein, when administered intramyocardially, stimulate angiogenesis in the infarcted myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carpath.2006.08.006DOI Listing

Publication Analysis

Top Keywords

growth factor
32
basic fibroblast
24
fibroblast growth
24
vascular endothelial
24
endothelial growth
24
growth
12
factor vascular
12
recombinant human
12
factor
8
vascular
8

Similar Publications

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!