Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Some (1,3')-bis-tetrahydroisoquinolines were reported as scaffold intermediates for the synthesis of pentacyclic piperazine core alkaloids and their cytotoxicity against cancerous cell lines was evaluated. The NMR and X-ray structural assignments revealed an anti C3-C11 backbone stereochemistry of piperazine structures. Inhibition of cancer cell proliferation of (1,3')-bis-tetrahydroisoquinoline scaffolds and pentacyclic piperazine systems was assessed against three human cancer cell lines (K562 myelogenous leukemia, A549 lung carcinoma, MCF-7 breast adenocarcinoma) and both mouse tumor cell lines of blood (P388) and lymphocytic (L1210) leukemia with considerable activity against the latter. The cell cycle analysis was also studied by flow cytometry measurement on K562 cell line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2007.01.108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!