Different roles of nitric oxide synthase isoforms in cardiopulmonary resuscitation in pigs.

Resuscitation

Department of Research, Divisions of Neonatology and Cardiology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA.

Published: April 2007

The purpose of the present study was to identify the roles of the three nitric oxide synthase (NOS) isoforms on whole body ischemia-reperfusion injury during cardiopulmonary resuscitation (CPR) with periodic acceleration (pGz) in pigs. Thirty-two anesthetized pigs (27.6+/-3.4 kg) were monitored for hemodynamics and selected echocardiographic variables. Twenty minutes after NOS inhibition or placebo administration, ventricular fibrillation (VF) was induced and remained untreated for 3 min, followed by CPR with pGz for 15 min, plus 3 min of manual chest compressions and defibrillation attempt. Four groups were studied: (1) saline control; (2) L-NAME (non-selective NOS inhibitor); (3) aminoguanidine (inducible NOS inhibitor); (4) TRIM (neuronal NOS inhibitor). Return of spontaneous circulation (ROSC) to 180 min occurred in 6/8 controls, 4/8 L-NAME, 7/8 aminoguanidine, and 2/8 TRIM animals. The L-NAME group had significantly lower organ blood flow, impaired cardiac function, but higher vascular tone than control group. The aminoguanidine group had the highest organ blood flows and survival rate. Six out of eight TRIM treated animals had initial return of heartbeat; however, with impaired heart contractility and could not survive more than 20 min of ROSC. This study reveals the differential role of endogenous NO produced from the three NOS isoforms during pGz-CPR. Both endothelial and neuronal NOS derived NO show predominantly protective effects while inducible NOS derived NO plays a detrimental role in pGz-CPR. The present study has shown that cardiac arrest and resuscitation appears to be associated with a different expression of NOS isoforms which appear to affect resuscitation outcomes differently.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2006.07.026DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
oxide synthase
8
synthase isoforms
8
cardiopulmonary resuscitation
8
organ blood
8
min
5
roles nitric
4
isoforms
4
isoforms cardiopulmonary
4
resuscitation
4

Similar Publications

Temperature and light dual-responsive hydrogels for anti-inflammation and wound repair monitoring.

J Mater Chem B

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC) is a simple and low-cost intervention that is thought to increase collateral blood flow through the vasodilatory effects of nitric oxide (NO) produced by the endothelium and red blood cells (RBCs). This study aims to investigate whether RIC affects RBC deformability and levels of NO and nitrite in patients with ischemic stroke.

Methods: This is a predefined substudy to the RESIST (Remote Ischemic Conditioning in Patients With Acute Stroke Trial) randomized clinical trial conducted in Denmark.

View Article and Find Full Text PDF

Chemical etching of silicon assisted by graphene oxide under negative electric bias.

Nanoscale Adv

January 2025

Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Yoshida-honmachi, Sakyo-ku Kyoto 606-8501 Japan

Chemical etching of silicon assisted by graphene oxide (GO) has been attracting attention as a new method to fabricate micro- or nano-structures. GO promotes the reduction of an oxidant, and holes are injected into silicon, resulting in the preferential dissolution of the silicon under GO. In the conventional etching method with GO, the selectivity of the etching was low due to the stain etching caused by nitric acid.

View Article and Find Full Text PDF

Mid-trimester preterm premature rupture of membranes is a rare complication of pregnancy associated with significant maternal and fetal risks. The ensuing prolonged oligohydramnios can lead to fetal pulmonary hypoplasia. In addition, there is an increased risk of miscarriage, preterm birth, and chorioamnionitis, contributing to septic morbidity in the mother-baby dyad.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!