Eukaryotic cells were individually transfected using commercially available atomic force microscope tips decorated with plasmidic DNA encoding for the fluorescent protein EGFP. In a typical transfection attempt, the tip is forcibly incorporated into the cell thus allowing for the transfer of the genetic material through the cell membrane. A sharp discontinuity, corresponding to the passage of the tip through the cell membrane can be easily detected when monitoring the cellular deformation as a function of the applied force. In order for the transfection to be successful, the tip must reversibly penetrates the membrane without causing disturbance or damage to the cell. Transfection success rate (30%), cell survival, and growth are confirmed by epifluorescence microscopy. This technique provides an alternative tool to the transfection toolbox, allowing the transfection of specific individual cells with minimal disturbance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2007.01.190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!