The aim of the present study was to examine, using the micronucleus (MN) assay, the low-dose radiation response of normal skin cells from cancer patients and to determine whether the hyper-radiosensitivity (HRS)-like phenomenon occurs in cells of these patients. Primary skin fibroblasts and keratinocytes derived from 40 patients with cervix cancer were studied. After in vitro gamma irradiation with single doses ranging from 0.05 to 4 Gy, MN induction was assessed. For each patient, the linear-quadratic (LQ) model and the induced repair (IR) model were fitted over the whole data set. In fits of the IR model, an HRS-like response after low doses (seen as the deviation over the LQ curve) was demonstrated for the fibroblasts of two patients and for the keratinocytes of four other patients. The alpha(s)/alpha(r) ratio for the six patients ranged from 2.7 to 15.4, whereas the values of the parameter d(c) ranged from 0.13 to 0.36 Gy. No relationship was observed between chromosomal radiosensitivity of fibroblasts and keratinocytes derived from the same donor in the low-dose (0.1-0.25 Gy) region. In conclusion, the fact that low-dose chromosomal hypersensitivity was observed for cells of only six of the patients studied suggests that it is not a common finding in human normal cells and can represent an individual characteristic.

Download full-text PDF

Source
http://dx.doi.org/10.1667/rr0649DOI Listing

Publication Analysis

Top Keywords

low-dose radiation
8
radiation response
8
patients
8
fibroblasts patients
8
patients cervix
8
cervix cancer
8
cells patients
8
fibroblasts keratinocytes
8
keratinocytes derived
8
low-dose
4

Similar Publications

Background: Different doses of radiotherapy (RT) exert diverse effects on tumor immunity, although the precise irradiation method remains unknown. This study sought to elucidate the influence of combining different doses of RT with immune checkpoint inhibitors (ICIs) on the infiltration of CD8T cells within tumors, thereby augmenting the anti-tumor response.

Methods: Constructing a mouse model featuring bilateral lung cancer tumors subjected to high and low dose irradiation, the analysis of RNA transcriptome sequencing data and immunohistochemical validation for tumors exposed to various dosages guided the selection of the optimal low-dose irradiation scheme.

View Article and Find Full Text PDF

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Invest Radiol

January 2025

From the Department of Radiology, Ulsan University Hospital, Ulsan, Republic of Korea (T.Y.L.); Department of Radiology, University of Ulsan College of Medicine, Seoul, Republic of Korea (T.Y.L.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (J.H.Y., H.K., J.M.L.); Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., S.H.P., J.M.L.); Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea (J.Y.P.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (S.H.P.); Department of Radiology, Hanyang University College of Medicine, Seoul, Republic of Korea (C.L.); Division of Biostatistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (Y.C.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.).

Objective: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design.

Materials And Methods: This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included (a) being aged between 20 and 85 years and (b) having suspected or known liver metastases.

View Article and Find Full Text PDF

Purpose: This study evaluates the feasibility of utilizing robotic-assisted bronchoscopy with cone beam computed tomography (RB-CBCT) platform to perform low-dose-rate brachytherapy implants (LDR-BT) in a mechanically ventilated human cadaveric model. Post-implant dosimetry was compared to standard stereotactic body radiation therapy plans (SBRT).

Materials And Methods: The RB-CBCT platform was used to place inert LDR-BT seeds into mechanically ventilated human cadavers with percutaneously injected pseudotumors.

View Article and Find Full Text PDF

How Effective is Low-dose Radiotherapy (LD-RT) for Heberden's Osteoarthritis? An Analysis of the Current Literature.

Z Orthop Unfall

January 2025

Geschäftsstelle Mannheim, Deutsche Arthrose-Hilfe e.V., Mannheim, Deutschland.

Low-dose radiotherapy is an established treatment option for non-malignant skeletal disorders. It is used in the treatment of Heberden's osteoarthritis (HA), but the evidence of efficacy does not seem to be certain. This paper reviews current literature for scientific evidence of efficacy in the treatment of HA.

View Article and Find Full Text PDF

Background: The formation of heterotopic ossification (HO) is a common complication after transosseous partial foot amputation. Development of HO in weightbearing and/or superficial areas can lead to increased pressures, which increases the likelihood of wound formation and pain. Current treatment modalities for HO of the foot include mechanical off-loading and surgical resection; however, prophylactic measures such as nonsteroidal anti-inflammatory drugs, bisphosphonates, and other medical therapies have been attempted previously with mixed efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!