The aim of this study was to evaluate some bioassays that are different in principle: cell counting, colony forming assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), sulforhodamine B (SRB), crystal violet, and alamarBlue, with respect to their ability to measure cisplatin-induced cell death of in vitro-cultivated squamous cell carcinoma of the head and neck (SCCHN). Cisplatin was applied in concentrations of 1.0, 5.0, 10.0, 50.0, and 100 microM. The cells were incubated for 1 h, and the cell survival was measured 5 d after treatment. We found the colorimetric assays and cell counting to be comparable. The colony forming assay indicated a higher degree of cell kill compared with the other techniques. Measurement of cell survival after treatment with cisplatin can be done by use of any of the above tested assays. However, the majority of SCCHN cell lines available do not form colonies easily, or at all. Therefore, comparing the chemosensitivity between such cell lines is limited to alternative assays. In this respect, any of the tested colorimetric assays can be used. However, they seem to underestimate cell kill. Cell counting is also an alternative. This technique, however, is time consuming and operator dependent, as in the case of manual counting, or relatively expensive when counting is performed electronically, compared with the colorimetric assays.

Download full-text PDF

Source
http://dx.doi.org/10.1290/0604022.1DOI Listing

Publication Analysis

Top Keywords

cell
13
cell kill
12
cell counting
12
colorimetric assays
12
cisplatin-induced cell
8
colony forming
8
forming assay
8
cell survival
8
cell lines
8
assays
6

Similar Publications

Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

In a previous report, we showed that voltage-gated K+ (Kv) Kv1 and Kv2 channels are involved in cAMP-induced neuritogenesis of mouse neuronal N2A cells. In this report, we examined the effects of tannic acid (TA) on Kv channels and neuritogenesis in N2A cells. TA (15 μM) mildly enhanced Kv currents at -30 to -20 mV but strongly inhibited Kv currents at higher voltages, causing a preferential activation of currents at low voltages.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

scMMAE: masked cross-attention network for single-cell multimodal omics fusion to enhance unimodal omics.

Brief Bioinform

November 2024

Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.

Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!