A photophysical study on the binding interaction of an efficient cancer cell photosensitizer, norharmane (NHM), with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), has been performed using a combination of steady-state and time-resolved fluorescence techniques. The emission profile undergoes a remarkable change upon addition of the proteins to the buffered aqueous solution of the photosensitizer. The polarity-dependent prototropic transformation is responsible for the remarkable sensitivity of this biological fluorophore to the protein environments. A marked increase in the fluorescence anisotropy in the proteinous environments indicates that the albumin proteins introduce motional restriction on the drug molecule. Light has been thrown on the denaturing action of urea on the probe-bound protein. The probable binding site of the drug in proteins has also been assessed from the combination of denaturation study, micropolarity measurement, and fluorescence resonance energy transfer (FRET) study. The present study suggests that the stability of serum albumins is enhanced upon binding with the drug.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm061084sDOI Listing

Publication Analysis

Top Keywords

binding interaction
8
serum albumins
8
serum albumin
8
study
5
binding
4
interaction biological
4
biological photosensitizer
4
serum
4
photosensitizer serum
4
albumins biophysical
4

Similar Publications

Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!