Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT, is a semiconducting polymer that forms thin film transistors (TFTs) with high field effect mobility on silicon dioxide dielectrics that are treated with alkyltrichlorosilanes ( approximately 0.2 to 0.5 cm2/V s) but forms TFTs with poor mobility on bare silicon dioxide (<0.005 cm2/V s). The microstructure of spin-coated thin films of PBTTT on these surfaces was studied using synchrotron X-ray diffraction and atomic force microscopy. PBTTT crystallizes with lamellae of pi-stacked polymer chains on both surfaces. The crystalline domains are well-oriented relative to the substrate in the as-spun state and become highly oriented and more ordered with thermal annealing in the liquid crystalline mesophase. Although the X-ray scattering from PBTTT is nearly identical on both surfaces, atomic force microscopy showed that the domain size of the crystalline regions depends on the substrate surface. These results suggest that electrical transport in PBTTT films is strongly affected by the domain size of the crystalline regions and the disordered regions between them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0670714 | DOI Listing |
BMC Oral Health
January 2025
Department of Endodontics, Faculty of Dentistry, Ordu University, Ordu, 52200, Turkey.
Background: Immature maxillary central teeth can be managed by using several treatment options. The aim of this finite element stress analysis study was to evaluate the effect of different treatment procedures on the stresses on immature maxillary incisor teeth models that generated on cone beam computed tomography, by trauma and bite forces.
Methods: A total of 11 different models consisting of revascularization treatment using MTA and biodentine and the state of the root apex formed with cement after treatment, apexification, modified apexification, traditional root canal treatment and two different control groups have been created.
BMC Oral Health
January 2025
Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Türkiye, Turkey.
Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.
Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.
Sci Rep
January 2025
Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Medical and surgical treatments for cystic echinococcosis (CE) are challenged by various complications. This study evaluates in vitro protoscolicidal activity of piperine-loaded mesoporous silica nanoparticles (PIP-MSNs) against protoscoleces of Echinococcus granulosus. MSNs were prepared by adding tetraethyl orthosilicate to cetyltrimethylammonium bromide and NaOH, and then loaded with PIP.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.
View Article and Find Full Text PDFSci Rep
January 2025
ArrayXpress, Inc., Raleigh, NC, USA.
Cancers of the mesothelium, such as malignant mesothelioma (MM), historically have been attributed solely to exposure to asbestos. Recent large scale genetic and genomic functional studies now show that approximately 20% of all human mesotheliomas are causally linked to highly penetrant inherited (germline) pathogenic mutations in numerous cancer related genes. The rarity of these mutations in humans makes it difficult to perform statistically conclusive genetic studies to understand their biological effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!