A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active trunk stiffness during voluntary isometric flexion and extension exertions. | LitMetric

Objective: Compare muscle activity and trunk stiffness during isometric trunk flexion and extension exertions.

Background: Elastic stiffness of the torso musculature is considered the primary stabilizing mechanism of the spine. Therefore, stiffness of the trunk during voluntary exertions provides insight into the stabilizing control of pushing and pulling tasks.

Methods: Twelve participants maintained an upright posture against external flexion and extension loads applied to the trunk. Trunk stiffness, damping, and mass were determined from the dynamic relation between pseudorandom force disturbances and subsequent small-amplitude trunk movements recorded during the voluntary exertions. Muscle activity was recorded from rectus abdominus, external oblique, lumbar paraspinal, and internal oblique muscle groups.

Results: Normalized electromyographic activity indicated greater antagonistic muscle recruitment during flexion exertions than during extension. Trunk stiffness was significantly greater during flexion exertions than during extension exertions despite similar levels of applied force. Trunk stiffness increased with exertion effort.

Conclusion: Theoretical and empirical analyses reveal that greater antagonistic cocontraction is required to maintain spinal stability during trunk flexion exertions than during extension exertions. Measured differences in active trunk stiffness were attributed to antagonistic activity during flexion exertions with possible contributions from spinal kinematics and muscle lines of action.

Application: When compared with trunk extension exertions, trunk flexion exertions such as pushing tasks require unique neuromuscular control that is not simply explained by differences in exertion direction. Biomechanical analyses of flexion tasks must consider the stabilizing muscle recruitment patterns when evaluating spinal compression and shear loads.

Download full-text PDF

Source
http://dx.doi.org/10.1518/001872007779597993DOI Listing

Publication Analysis

Top Keywords

trunk stiffness
24
flexion exertions
20
extension exertions
16
flexion extension
12
trunk
12
trunk flexion
12
exertions extension
12
exertions
11
flexion
9
active trunk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!