Microwave-promoted esterification reactions have been monitored using in situ Raman spectroscopy. Having optimised a reaction on a 23 mmol scale, it was transferred to a larger reaction vessel and scaled up to 0.26 mol, again with Raman monitoring. With conditions in hand, an automated stop-flow apparatus was used to prepare 5.7 moles of product.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b615597aDOI Listing

Publication Analysis

Top Keywords

situ raman
8
raman monitoring
8
monitoring tool
4
tool rapid
4
rapid optimisation
4
optimisation scale-up
4
scale-up microwave-promoted
4
microwave-promoted organic
4
organic synthesis
4
synthesis esterification
4

Similar Publications

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.

Adv Sci (Weinh)

December 2024

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.

Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.

View Article and Find Full Text PDF

Molecular basis of HO/O/OH discrimination during electrochemical activation of DyP peroxidases: The critical role of the distal residues.

J Inorg Biochem

December 2024

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina. Electronic address:

Here, we show that the replacement of the distal residues Asp and/or Arg of the DyP peroxidases from Bacillus subtilis and Pseudomonas putida results in functional enzymes, albeit with spectroscopically perturbed active sites. All the enzymes can be activated either by the addition of exogenous HO or by in situ electrochemical generation of the reactive oxygen species (ROS) OH, O and HO. The latter method leads to broader and upshifted pH-activity profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!