Tissue equivalent proportional counters (TEPC) allow the measurement of the ambient dose equivalent H(*)(10) in mixed fields. IRSN has been studying the design and the response of a TEPC in terms of neutron H(*)(10). First, a cylindrical counter was filled with propane gas at a low pressure. H(*)(10) measured in monoenergetic neutron fields underestimated the reference (>50%) at low energies (< 500 keV). A small amount of (3)He was then added to the gas in order to increase the response. The underestimation observed decreased but the results (> 40%) were not totally complying with the objectives (< 20%). Finally the choice was made to improve the analysis of the microdosimetric spectra y.d(y) in order to identify the energy of the incident neutrons. The analysis allows a better estimate of H(*)(10). The aim of this article is to describe the TEPC and the effect of these methods of optimisation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncl395DOI Listing

Publication Analysis

Top Keywords

tissue equivalent
12
equivalent proportional
8
counter filled
8
proportional counter
4
filled mixture
4
mixture tissue
4
equivalent gas
4
gas 3he
4
3he neutron
4
neutron monitoring
4

Similar Publications

Background The thyroid gland is the most susceptible organ to radiation during the exposure of teeth because the thyroid area appears to be within the primary beam, and the dose levels are relatively high even after using collimation. This study aims to develop an eco-friendly thyroid shield by reusing lead foils from intra-oral periapical radiographic films and evaluate its effectiveness in intraoral radiography. Methods A total of 16 patients undergoing endodontic procedures who gave written consent to participate in the study were included and divided into four categories: anterior, canine, premolar, and molar.

View Article and Find Full Text PDF

Biomimetic bone cartilage scaffolds based on trilayer methacrylated hydroxyapatite/GelMA composites for full-thickness osteochondral regeneration.

Int J Biol Macromol

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.

View Article and Find Full Text PDF

The increasing interest in hadron therapy has heightened the need for accurate and reliable methods to assess radiation quality and the biological effectiveness of particles used in treatment. Microdosimetry has emerged as a key tool for this, demonstrating its potential, reliability, and suitability. In this context, solid-state microdosimeters offer technological advantages over traditional Tissue-Equivalent Proportional Counters, and recent advancements have further improved their performance and reliability.

View Article and Find Full Text PDF

Background: Oblique lumbar interbody fusion (OLIF) results in less tissue damage than in other surgeries, but immediate postoperative pain occurs. Notably, facet joint widening occurs in the vertebral body after OLIF. We hypothesized that the application of a facet joint block to the area of widening would relieve facet joint pain.

View Article and Find Full Text PDF

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!