We identified Shiga toxin gene (stx)-negative Escherichia coli O26:H11 and O26:NM (nonmotile) strains as the only pathogens in the stools of five patients with hemolytic-uremic syndrome (HUS). Because the absence of stx in E. coli associated with HUS is unusual, we examined the strains for potential virulence factors and interactions with microvascular endothelial cells which are the major targets affected during HUS. All five isolates possessed the enterohemorrhagic E. coli (EHEC)-hlyA gene encoding EHEC hemolysin (EHEC-Hly), expressed the enterohemolytic phenotype, and were cytotoxic, in dose- and time-dependent manners, to human brain microvascular endothelial cells (HBMECs). Significantly reduced cytotoxicity in an EHEC-Hly-negative spontaneous derivative of one of these strains, and a dose- and time-dependent cytotoxicity of recombinant E. coli O26 EHEC-Hly to HBMECs, suggest that the endothelial cytotoxicity of these strains was mediated by EHEC-Hly. The toxicity of EHEC-Hly to microvascular endothelial cells plausibly contributes to the virulence of the stx-negative E. coli O26 strains and to the pathogenesis of HUS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2006.12.001 | DOI Listing |
Antibiotics (Basel)
January 2025
Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from , the process is labor-intensive, limiting broader application.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India. Electronic address:
Bacterial diseases alone or in combination with other pathogens lead to significant economic losses in poultry globally including India. One of these diseases is avian colibacillosis which is caused by avian pathogenic Escherichia coli (APEC). The present study sought to isolate and characterize using in vivo and in vitro assays E.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Field Service - South East and London, UK Health Security Agency, London, UK.
Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.
Lipopolysaccharide (LPS) is the primary pathogenic factor in Gram-negative sepsis. While the presence of LPS in the bloodstream during infection is associated with disseminated intravascular coagulation, the mechanistic link between LPS and blood coagulation activation remains ill-defined. The contact pathway of coagulation-a series of biochemical reactions that initiates blood clotting when plasma factors XII (FXII) and XI (FXI), prekallikrein (PK), and high molecular weight kininogen interact with anionic surfaces-has been shown to be activated in Gram-negative septic patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!