Bacterial production in glacial runoff and aquatic habitats along a c. 500 m transect from the ablation area of a Svalbard glacier (Midre Lovénbreen, 79 degrees N, 12 degrees E) down to a series of proglacial lakes in its forefield were assessed. In addition, a series of in situ experiments were conducted to test how different nutrient sources (glacial flour and dissolved organic matter derived from goose faeces) and temperature affect bacterial abundance and production in these ecosystems. Bacterial abundance and production increased significantly along this transect and reached a maximum in the proglacial lakes. Bacterial diversity profiles as assessed by denaturing gradient gel electrophoresis indicated that communities in glacial runoff were different from those in proglacial lakes. Heterotrophic bacterial production was mainly controlled by temperature and phosphorus limitation. Addition of both glacial flour and dissolved organic matter derived from goose faeces stimulated bacterial production in those lakes. The results suggest that glacial runoff sustains an active bacterial community which is further stimulated in proglacial lakes by higher temperatures and nutrient inputs from bird faeces. Thus, as in maritime temperate and Antarctic settings, bacterial communities developing in the recently deglaciated terrain of Svalbard receive important inputs of nutrients via faunal transfers from adjacent ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2006.00262.x | DOI Listing |
Sci Rep
December 2024
Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
The Northern Antarctic Peninsula (NAP) and the West Antarctic Ice Sheet (WAIS) are likely to respond rapidly to climate changes by increasing the collapse of peripheral ice shelves and the number of days above 0 °C. These facts make this region a representative hotspot of the global sea level rise and the location of one of the global climate tipping points (thresholds in the Earth system whose changes may become irreversible, if exceeded). Understanding the climate evolution of the NAP, based on past evidences, may help infer its future scenario.
View Article and Find Full Text PDFSci Rep
October 2024
US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, 86001, USA.
Globally, aquatic ecosystems are one of the largest but most uncertain sources of methane, a potent greenhouse gas. It is unclear how climate change will affect methane emissions, but recent work suggests that glacial systems, which are melting faster with climate change, may be an important source of methane to the atmosphere. Currently, studies quantifying glacial emissions are limited in number, and the role of methanotrophy, or microbial methane oxidizers, in reducing atmospheric emissions from source and receiving waters is not well known.
View Article and Find Full Text PDFWater Res
November 2024
Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China.
Recent climate warming and associated glacier retreat have dramatically changed the environmental conditions and microbial inhabitants of proglacial lakes. However, our understanding of the effects of climate warming and glacial influence on microbial biodiversity in these lakes remain relatively limited. Here, we studied bacterioplankton communities in 22 proglacial lakes on the Tibetan Plateau, spanning a range of nearly 7 °C in mean annual temperature (MAT), and examined the effects of climate and glaciers on their biodiversity by a space-to-time substitution.
View Article and Find Full Text PDFSci Total Environ
October 2024
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India. Electronic address:
The fabric of the Antarctic lacustrine system has a crucial role in assimilating the anthropogenic inputs and mitigating their long time impacts on climate change. Here, we present the changes in the concentrations of major ions and trace metals in the surface water of the lacustrine system to understand the extent of anthropogenic impacts from the adjacent Schirmacher Hills, East Antarctica. The results show that the land-locked lakes (closed-basin lakes surrounded by topographical barriers such as mountains or bedrock formations) in the region have a moderate enrichment in elemental concentrations compared to the pro-glacial lakes (marginal freshwater bodies that form at the terminus of a glacier or ice sheet).
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2024
State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
Mountain glaciers are frequently assessed for their hydrological connectivity from glaciers to proglacial lakes. Ecological process on glacier surfaces and downstream ecosystems have often been investigated separately, but few studies have focused on the connectivity between the different glacial habitats. Therefore, it remains a limited understanding of bacterial community assembly across different habitats along the glacier hydrological continuum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!