Photodissociation dynamics of ethyl iodide in the A band has been investigated at several wavelengths between 245 and 283 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of I, I(*), and C(2)H(5) fragments are analyzed to yield corresponding speed and angular distributions. Two photodissociation channels are found: I(5p (2)P(3/2))+C(2)H(5) (hotter internal states) and I(*)(5p (2)P(1/2))+C(2)H(5) (colder). In addition, a competitive ionization dissociation channel, C(2)H(5)I(+)+h nu-->C(2)H(5)+I(+), appears at the wavelengths <266 nm. The I/I(*) branching of the dissociation channels may be obtained directly from the C(2)H(5) (+) images, yielding the quantum yield of I(*) about 0.63-0.76, comparable to the case of CH(3)I. Anisotropy parameters (beta) determined for the I(*) channel remain at 1.9+/-0.1 over the wavelength range studied, indicating that the I(*) production should originate from the (3)Q(0) state. In contrast, the beta(I) values become smaller above 266 nm, comprising two components, direct excitation of (3)Q(1) and nonadiabatic transition between the (3)Q(0) and (1)Q(1) states. The curve crossing probabilities are determined to be 0.24-0.36, increasing with the wavelength. A heavier branched ethyl group does not significantly enhance the I(5p (2)P(3/2)) production from the nonadiabatic contribution, as compared to the case of CH(3)I.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2435341 | DOI Listing |
Chempluschem
December 2024
Budapest University of Technology and Economics, Department of Chemical and Environmental Process Engineering, Muegyetem rkp. 3., 1111, Budapest, HUNGARY.
The palladium-catalyzed aminocarbonylation is one of the most effective methods for the synthesis of carboxamides having great importance. Replacing fossil-based organic solvents in this routinely used catalytic protocol with biomass-derived media is crucial for developing environmentally safe alternatives and towards sustainability considerations. In this study, the open-chain derivatives of bio-originated substance g-valerolactone i.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Lanzhou University, College of chemistry and chemical engineering, Lanzhou, CHINA.
Imperfections in metal halide perovskites, such as those induced by light exposure or thermal stress, compromise device performance and stability. A key challenge is immobilizing volatile iodine produced by iodide oxidation and regenerating impurities like elemental lead and iodine. Here, we address this by integrating a redox-active supramolecular assembly of nickel octaethylporphyrin into perovskite film, functioning as both an immobilizer and redox shuttle.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine.
The title organic-inorganic hybrid salt, CHIN·I, is isotypic with its bromine analog, CHBrN·Br [Semenikhin (2024 ▸). E, 738-741]. Its asymmetric unit consists of one 2-iodo-ethyl-ammonium cation and one iodide anion.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles -, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one - and -. The starting compound was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of with strong electrophiles, namely, -aminophenol, -amino thiophenol, and/or -phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles -.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China.
Reproductive toxicities of imidazolium- ([EMIM]X) and pyridinium-based ([APYR]X) ionic liquids (ILs) are essential to fully assess their hazards. Presently, effects of five ILs on the intricate processes of reproduction, including sperm-oocyte interactions, were explored in Caenorhabditis elegans. Results showed that 1-ethylpyridinium bromide ([EPYR]Br) stimulated oocytes, zygotes and total reproduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!