Objective: The purpose of this study was to determine whether long-term electrical stimulation training of the paralyzed soleus could change this muscle's physiological properties (torque, fatigue index, potentiation index, torque-time integral) and increase tibia bone mineral density.
Methods: Four men with chronic (>2 years) complete spinal cord injury (SCI; American Spinal Injury Association classification A) trained 1 soleus muscle using an isometric plantar flexion electrical stimulation protocol. The untrained limb served as a within-subject control. The protocol involved ~ 30 minutes of training each day, 5 days a week, for a period of 6 to 11 months. Mean compliance over 11 months of training was 91% for 3 subjects. A fourth subject achieved high compliance after only 5 months of training. Mean estimated compressive loads delivered to the tibia were approximately 110% of body weight. Over the 11 months of training, the muscle plantar flexion torque, fatigue index, potentiation index, and torque-time integral were evaluated periodically. Bone mineral density (dual-energy x-ray absorptiometry) was evaluated before and after the training program.
Results: The trained limb fatigue index, potentiation index, and torque-time integral showed rapid and robust training effects (P<.05). Soleus electrical stimulation training yielded no changes to the proximal tibia bone mineral density, as measured by dual-energy x-ray absorptiometry. The subject with low compliance experienced fatigue index and torque-time integral improvements only when his compliance surpassed 80%. In contrast, his potentiation index showed adaptations even when compliance was low.
Conclusions: These findings highlight the persistent adaptive capabilities of chronically paralyzed muscle but suggest that preventing musculoskeletal adaptations after SCI may be more effective than reversing changes in the chronic condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270314 | PMC |
http://dx.doi.org/10.1177/1545968306293447 | DOI Listing |
Trials
January 2025
Department of Neurology, Universitätsmedizin Greifswald, Fleischmannstraße 6, Greifswald, 17489, Germany.
Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China.
Aim: The aim of this systematic review and meta-analysis was to explore the effects of different pulmonary rehabilitation on respiratory function in mechanically ventilated patients and to determine the optimal type of intervention.
Method: A comprehensive search was conducted using PubMed, Embase, Web of Science, Joanna Briggs Institute(JBI), and the Cochrane Library from their inception until September 16th, 2024. The search targeted randomized controlled trials (RCTs) comparing pulmonary rehabilitation or usual care, for improving respiratory function in mechanically ventilated patients.
J Med Internet Res
December 2024
Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, Australia.
Background: Advanced technologies are becoming increasingly accessible in rehabilitation. Current research suggests technology can increase therapy dosage, provide multisensory feedback, and reduce manual handling for clinicians. While more high-quality evidence regarding the effectiveness of rehabilitation technologies is needed, understanding of how to effectively integrate technology into clinical practice is also limited.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
Background: There is growing evidence from laboratory and clinical trials that deep brain stimulation (DBS) at memory associated structures enhances cognitive functions. Best site for memory enhancing-DBS is still unclear. The medial septum (MS), the important modulator of the hippocampal neural network, might be a key target to accomplish therapeutic efficacy in memory impaired patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!