Blastoid-variant mantle-cell lymphoma (MCL-BV), unlike most B-cell non-Hodgkin lymphomas (NHL-Bs), is refractory to conventional chemotherapy and associated with a very poor prognosis. Development of new therapies has been hampered by the lack of valid animal models. We have developed a novel murine model of MCL-BV by crossing interleukin 14alpha (IL-14alpha) transgenic mice with c-Myc transgenic mice (double transgenic [DTG]). IL-14alpha is a B-cell growth factor that is expressed in a number of high-grade lymphomas, including MCL-BV. Ninety-five percent of IL-14alpha transgenic mice develop CD5(+) large B-cell lymphomas by 18 months of age. Sixty percent of c-Myc transgenic mice develop pre-B-cell lymphomas by 12 months of age. Close to 100% of DTG mice develop an aggressive, rapidly fatal lymphoma at 3 to 4 months of age that is CD5(+), CD19(+), CD21(-), CD23(-), sIgM(+). The tumor is found in the blood, bone marrow, liver, spleen, lymph nodes, gastrointestinal tract, and lungs and rarely in the brain, similar to the involvement seen in human MCL-BV. Immunoglobulin gene rearrangements document the monoclonality of the tumor. Cyclin D1 is highly expressed in these tumors, as it is in MCL-BV. DTG represents a novel model for MCL-BV that should reveal important insights into the pathogenesis of the lymphoma and contribute to the development of new forms of therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885517 | PMC |
http://dx.doi.org/10.1182/blood-2006-08-038497 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!