The chemotherapeutic agent irinotecan (IT) is highly effective against several types of cancer, although its use is limited due to severe intestinal toxicity. The aim of this study was to evaluate inflammatory and oxidative stress-related processes contributing to small intestinal mucosa damage and to determine the extent to which green tea polyphenols could ameliorate the detrimental effects induced by IT. In Expt. 1, mice were challenged intraperitoneally with IT or saline on 2 consecutive days. For time kinetic measurements, the IT-treated mice were killed at 3, 24, 48, 72, and 96 h after the 2nd dose of IT. Three hours after IT administration, the ileum glutathione concentration dropped significantly. Lipid peroxidation and inflammation, as measured by macrophage inflammatory protein-2 content, myeloperoxidase activity, and nuclear factor-kappaB translocation, were highest between 24 and 48 h after IT treatment. In Expt. 2, green tea polyphenols (1 g/L) were supplied via drinking water for 7 d before and 3 d after treatment with IT. Green tea polyphenols significantly affected the glutathione:glutathione disulfide ratio but not lipid peroxidation, macrophage inflammatory protein-2 levels, myeloperoxidase activity, or nuclear factor-kappaB activation. Our study reveals that IT administration is associated with oxidative stress and inflammation, both occurring simultaneously to IT-induced mucosal damage. The antioxidative defense is affected soon after IT administration. Green tea polyphenols supplied orally protected against oxidation in our experimental model and could be one approach to reducing the risk of IT-induced side effects in the clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/137.3.634 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSurgery
January 2025
Hepato Pancreato Biliary and Liver Transplant Surgery of the Department of Surgery Oncology and Gastroenterology (DiSCOG), Padova University, Padova, Italy. Electronic address:
J Stomatol Oral Maxillofac Surg
January 2025
Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.
Background: Oral cancer is a common head and neck cancer malignancy that seriously affects patients' quality of life and increases the health care burden. Moreover, there is a lack of comprehensive reviews of previous research on factors associated with oral cancer. The aim of the current umbrella review was to provide a comprehensive and systematic summary of relevant studies, to grade the quality of evidence of relevant studies, and to provide guidance for the prevention of oral cancer.
View Article and Find Full Text PDFFood Chem
January 2025
Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland. Electronic address:
Catechins, due to their high antioxidant capacity, are ones of the most common ingredients of human diet (e.g. tea, fruits, cacao) of the well-known health benefit properties.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China. Electronic address:
Dietary polyphenols represent a diverse group of plant-derived compounds known for their extensive biological activities, offering significant promise in the prevention and treatment of various chronic illnesses. Despite their potential, advancements in their research have been curtailed by challenges in structural analysis and limitations in existing research models. This review marks a pioneering exploration into how bile acids, gut microbiota, and the gut-brain axis serve as conduits through which dietary polyphenols can exert therapeutic effects on Inflammatory Bowel Disease (IBD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!