A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Raman microspectroscopic analysis of triterpenoids found in plant cuticles. | LitMetric

Raman microspectroscopic analysis of triterpenoids found in plant cuticles.

Appl Spectrosc

Department of Chemistry, The University of British Columbia, 6174 University Boulevard, Vancouver, BC, Canada.

Published: January 2007

The above-ground organs of plants are covered by a cuticle, an extracellular membrane performing important physiological and ecological functions, that consists of the fatty acid-derived polymer cutin and waxes. In the cuticular wax of many species, including the leaves of Prunus laurocerasus, triterpenoids are found at high concentrations. This paper investigates the potential of Raman microspectroscopy for the simultaneous detection of structurally similar triterpenoids in plant cuticles. Relative composition analysis was first performed on artificial triterpenoid mixtures consisting of alpha-amyrin and oleanolic acid, as well as oleanolic acid and ursolic acid, the two triterpenoids abundantly found in the cuticles of P. laurocerasus. The different triterpenoids could be distinguished in the mixture spectra and the resulting calculated triterpenoid ratios were consistent with the expected values. Qualitative analysis of the Raman spectra of P. laurocerasus cuticle demonstrated the in situ detectability of the triterpenoids using this approach. It is shown here that Raman microspectroscopy has the potential to provide useful information concerning the spatial distribution of some key chemical components of plant cuticles. This technique thus offers a valuable complement to the current standard analytical methods used for analyzing the bulk composition of plant cuticles.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370207779701352DOI Listing

Publication Analysis

Top Keywords

plant cuticles
16
triterpenoids plant
8
laurocerasus triterpenoids
8
raman microspectroscopy
8
oleanolic acid
8
triterpenoids
6
cuticles
5
raman
4
raman microspectroscopic
4
microspectroscopic analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!