Correlation between collagen solubility and skin optical clearing using sugars.

Lasers Surg Med

Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, Texas 77843, USA.

Published: February 2007

Background And Objective: Light scattering from collagen within skin limits light-based therapeutics while increasing the risk of epidermal thermal injury. Specific chemicals show the ability to reduce light scattering by reversibly altering the optical properties of skin. This study examines the correlation between collagen solubility and the optical clearing potential (OCP) of sugars and sugar-alcohols using in vitro rodent skin.

Materials And Methods: Collagen solubility in dextrose, fructose, sucrose, and sorbitol was measured using near-UV spectroscopy. Light transmittance, reflectance, and rodent skin thickness were measured (giving skin reduced scattering coefficient) before and after exposure of the dermal surface to sugars and sugar-alcohols. OCP was calculated as the ratio of reduced scattering coefficients before and after exposures.

Results: Dextrose, fructose, sucrose, and sorbitol had at least twice the collagen solubility and twice the OCP as compared to glycerol. In general, collagen solubility correlated with each agent's ability to optically clear rodent skin.

Conclusion: These results demonstrate that sugar and sugar-alcohol interaction with collagen are a primary event in tissue optical clearing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.20417DOI Listing

Publication Analysis

Top Keywords

collagen solubility
20
optical clearing
12
correlation collagen
8
light scattering
8
sugars sugar-alcohols
8
dextrose fructose
8
fructose sucrose
8
sucrose sorbitol
8
reduced scattering
8
collagen
6

Similar Publications

Endocytic recycling is central to circadian collagen fibrillogenesis and disrupted in fibrosis.

Elife

January 2025

Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.

View Article and Find Full Text PDF

Shenmai Injection Reduces Cardiomyocyte Apoptosis Induced by Doxorubicin through miR-30a/Bcl-2.

Chin J Integr Med

January 2025

Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.

Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.

Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.

View Article and Find Full Text PDF

Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing.

Biomaterials

December 2024

State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis.

View Article and Find Full Text PDF

Preeclampsia (PE) is a gestational complication affecting 5% to 10% of all pregnancies. PE is characterized by hypertension and endothelial dysfunction, whose etiology involves, among other factors, alterations in the extracellular matrix (ECM) that can compromise vascular remodeling and trophoblast invasion, ie, processes essential for placental development. Endothelial dysfunction is caused by release of antiangiogenic factors, mainly a soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes two endothelial angiogenic factors, the vascular endothelial growth factor (VEGF) and placental growth factor (PLGF).

View Article and Find Full Text PDF

Complex Pattern of Platelet Activation/Reactivity After SARS-CoV-2 Infection.

Int J Mol Sci

December 2024

Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.

COVID-19 and post-COVID (long COVID) are associated with thromboembolic complications; however, it is still not clear whether platelets play a leading role in this phenomenon. The platelet hyperreactivity could result from the direct interaction between platelets and viral elements or the response to inflammatory and prothrombotic factors released from blood and vessel cells following infection. The existing literature does not provide clear-cut answers, as the results determining platelet status vary according to methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!