The lipase-catalyzed enantioselective transesterification of racemic secondary alcohols was studied using vinyl acetate as acyl donor in two imidazolium-based ionic liquids vs. hexane (Scheme), both in the absence and presence of catalytic amounts of organic bases such as triethylamine (Et(3)N) or pyridine. The organic bases generally enhanced both the rate and enantioselectivity of the reaction. Further, the system 1-butyl-3-methyl-1H-imidazolium hexafluorophosphate/Candida antarctica lipase B ([bmim][PF(6)]/CALB) could be readily recycled four times without significant loss in activity or enantioselectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.200790023DOI Listing

Publication Analysis

Top Keywords

organic bases
12
racemic secondary
8
secondary alcohols
8
lipase-catalyzed enantioselective
8
enantioselective transesterification
8
ionic liquids
8
environmentally friendly
4
friendly efficient
4
efficient resolution
4
resolution racemic
4

Similar Publications

The hydrolysis rates of many organic chemicals are accelerated under alkaline conditions by the presence of hydroxide (HO), which is typically assumed to be the predominant species contributing to base-catalyzed hydrolysis in both natural waters and laboratory buffers used in standard protocols. In this study, we demonstrated that weak bases (e.g.

View Article and Find Full Text PDF

This study reports a green, multi-component synthesis of 2-aminoimidazole-linked quinoxaline Schiff bases using a novel superparamagnetic acid catalyst. The catalyst consists of sulfo-anthranilic acid (SAA) immobilized on MnCoFeO@alginate magnetic nanorods (MNRs), achieving high SAA loading (1.8 mmol g) and product yields (91-97%).

View Article and Find Full Text PDF

Exploring the synergistic effects of soil nutrients, rhizosphere fungi, and endophytic fungi on the shaping of root metabolites in Angelica sinensis (Oliv.) Diels.

Fungal Biol

February 2025

School of Agricultural and Biological Engineering, Longdong University, Qingyang, 745000, China; Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, 745000, China.

The root of Angelica sinensis (Oliv.) Diels (Ang) is a bulk Chinese herbal medicine, and the microecological regulation is a sustainable means to enhance its quality. In this study, Angs at five bases (LZ, XZ, QS, PM, MZC) in Minxian County, Gansu Province were taken as the research objects.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

Organic compounds containing azines, di-imines, or bis-Schiff-bases have two azomethine (-CH=N-) functional groups associated with a bridging component. These constituents have attracted attention from a diversity of disciplines, comprising coordination, medicinal, agriculture chemistry, and organic synthesis, because of their comprehensive chemical reactivity and nature. This study determines common synthetic approaches and various biological and pharmacological activities of several substituted bis-Schiff byproducts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!