Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.2935 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States.
Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons.
View Article and Find Full Text PDFChemistry
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan.
A bis(triarylamine) (BTA) radical cation, bridged by two o-terphenylene moieties, was prepared and characterized to explore the impact of the double-π-bridge on the intramolecular charge/spin transfer process in the 2-site organic mixed-valence (MV) compound. Spectroscopic analyses on optically and thermally assisted intervalence charge-transfer (IVCT) processes revealed that the doubly π-bridging enhanced the charge delocalization between two nitrogen redox-active centers, whereas the electronic coupling was not so strengthened, in comparison with the singly π-bridging reference compound.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2025
College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Background: Analysis of the phytocannabinoids holds significant importance because of their various pharmacological properties and potential therapeutic applications. Tandem mass spectrometry (MS/MS) coupled with electrospray ionization in positive ion mode is employed in this study to describe the collision-induced dissociation (CID) behavior of a series of common phytocannabinoids with the aim of establishing a generalized MS/MS fingerprint.
Materials And Methods: Eight phytocannabinoids, namely, ∆-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabichromene (CBC), cannabigerol (CBG), tetrahydrocannabivarin (THCV), 11-hydroxy-Δ-tetrahydrocannabinol (11-OH-THC), 6-hydroxy-cannabidiol (6-OH-CBD), and 7-hydroxy-cannabidiol (7-OH-CBD), were studied.
Chemphyschem
December 2024
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
In this study, we systematically explored the stability and isomerism of neutral and dehydrogenated polycyclic aromatic hydrocarbons (PAHs) in various charge states, focusing on anthracene, acridine, and phenazine. Our findings highlight key aspects that deepen the understanding of these molecules' reactivity and stability, relevant in both laboratory and astrophysical contexts. Structural symmetry and the presence of nitrogen atoms significantly impact PAH stability and reactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!