Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase.

Nat Struct Mol Biol

Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA.

Published: March 2007

Histone methylation is important in regulating chromatin structure and function. In budding yeast, methylation of histone H3 at Lys4 (H3-K4) is associated with active transcription and is enriched at the 5' regions of transcribed genes. Here we identify a novel budding yeast JmjC domain-containing H3-K4 demethylase, Jhd2p, that antagonizes the trimethyl modification state and contributes to regulation of telomeric silencing.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb1204DOI Listing

Publication Analysis

Top Keywords

histone lys4
8
budding yeast
8
yeast jhd2p
4
jhd2p histone
4
lys4 trimethyl
4
trimethyl demethylase
4
demethylase histone
4
histone methylation
4
methylation regulating
4
regulating chromatin
4

Similar Publications

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression. We previously demonstrated that serotonylation and dopaminylation of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour.

View Article and Find Full Text PDF

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF

H3K4me3 Genome-Wide Distribution and Transcriptional Regulation of Transposable Elements by RNA Pol2 Deposition.

Int J Mol Sci

December 2024

Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide enrichment of H3K4me3 during early embryo development and embryonic stem cells (ESCs) in both sheep and mice.

View Article and Find Full Text PDF

Development of nucleus-targeted histone-tail-based photoaffinity probes to profile the epigenetic interactome in native cells.

Nat Commun

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China.

Dissection of the physiological interactomes of histone post-translational modifications (hPTMs) is crucial for understanding epigenetic regulatory pathways. Peptide- or protein-based histone photoaffinity tools expanded the ability to probe the epigenetic interactome, but in situ profiling in native cells remains challenging. Here, we develop a nucleus-targeting histone-tail-based photoaffinity probe capable of profiling the hPTM-mediated interactomes in native cells, by integrating cell-permeable and nuclear localization peptide modules into an hPTM peptide equipped with a photoreactive moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!