Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors.

Nat Neurosci

Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, USA.

Published: March 2007

Most sensory systems are primarily specialized to detect one sensory modality. Here we report that olfactory sensory neurons (OSNs) in the mammalian nose can detect two distinct modalities transmitted by chemical and mechanical stimuli. As revealed by patch-clamp recordings, many OSNs respond not only to odorants, but also to mechanical stimuli delivered by pressure ejections of odor-free Ringer solution. The mechanical responses correlate directly with the pressure intensity and show several properties similar to those induced by odorants, including onset latency, reversal potential and adaptation to repeated stimulation. Blocking adenylyl cyclase or knocking out the cyclic nucleotide-gated channel CNGA2 eliminates the odorant and the mechanical responses, suggesting that both are mediated by a shared cAMP cascade. We further show that this mechanosensitivity enhances the firing frequency of individual neurons when they are weakly stimulated by odorants and most likely drives the rhythmic activity (theta oscillation) in the olfactory bulb to synchronize with respiration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2227320PMC
http://dx.doi.org/10.1038/nn1856DOI Listing

Publication Analysis

Top Keywords

olfactory sensory
8
sensory neurons
8
mechanical stimuli
8
mechanical responses
8
mechanical
5
dual functions
4
functions mammalian
4
mammalian olfactory
4
sensory
4
neurons odor
4

Similar Publications

Olfaction with legs-Spiders use wall-pore sensilla for pheromone detection.

Proc Natl Acad Sci U S A

January 2025

General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany.

The sense of smell is a central sensory modality of most terrestrial species. However, our knowledge of olfaction is based on vertebrates and insects. In contrast, little is known about the chemosensory world of spiders and nothing about how they perform olfaction despite their important ecological role.

View Article and Find Full Text PDF

Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the progressive impact of chronic iron overload on the olfactory bulb, a region significantly affected in early neurodegenerative diseases like Parkinson's and Alzheimer's. The focus is on understanding how iron accumulation leads to oxidative stress, mitochondrial dysfunction, and neuronal damage over time in middle-aged mice.

Method: The mice were continuously administered FC for a duration of 16 weeks, and the olfactory behavior of the mice was observed at intervals of 4 weeks.

View Article and Find Full Text PDF

Social odors drive hippocampal CA2 place cell responses to social stimuli.

Prog Neurobiol

December 2024

Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712. Electronic address:

Hippocampal region CA2 is essential for social memory processing. Interaction with social stimuli induces changes in CA2 place cell firing during active exploration and sharp wave-ripples during rest following a social interaction. However, it is unknown whether these changes in firing patterns are caused by integration of multimodal social stimuli or by a specific sensory modality associated with a social interaction.

View Article and Find Full Text PDF

Sensory compensation occurs when loss of one sense leads to enhanced perception by another sense. We have identified a previously undescribed mechanism of sensory compensation in female mosquitoes. Odorant receptor co-receptor () mutants show enhanced attraction to human skin temperature and increased heat-evoked neuronal activity in foreleg sensory neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!