The innate ability of infected macrophages to undergo programmed cell death (apoptosis) and curtail the infection is crucial for the host defense. Although phagocytosis and intracellular killing mechanisms leading to apoptosis in macrophages are highly effective in eliminating the infecting tuberculous bacilli, some Mycobacterium tuberculosis(Mtb) strains have evolved strategies to inhibit this microbicidal function and make use of macrophage for its successful and prolonged survival. Two clinical strains of Mtb (S7 and S10) found to be prevalent and primitive, based on molecular epidemiological studies, were used to study the magnitude in induction of apoptosis in THP-1 cells at various time points of infection and to correlate it with phagocytosis. The percentage of phagocytosis did not show any strain-specific association with differentiated THP-1 cells. But in the phagocytic index, the clinical strains showed a low dose of infection in the 1-10 bacilli category thereby exerting less burden on the cells. The induction of apoptosis was strain dependent. The THP-1 cells infected with H37Ra and S10 showed an increase in apoptosis at all time points while the S7 strain induced minimum apoptosis. A negative correlation between apoptosis and phagocytic index was observed in the 1-10 category and a positive correlation in the > 20 category of the phagocytic index. This novel observation indicates that the magnitude of THP-1 cell apoptosis is a function of the number of internalized mycobacteria. These results indicated a differential mode of infection by clinical strains and their adaptation to different survival strategies that may lead to immune suppression and pathogenesis of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1348-0421.2007.tb03902.xDOI Listing

Publication Analysis

Top Keywords

thp-1 cells
16
clinical strains
12
apoptosis
9
apoptosis thp-1
8
cells infected
8
induction apoptosis
8
time points
8
thp-1
5
cells
5
strains
5

Similar Publications

The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) in the colorectal cancer (CRC) microenvironment promote tumor progression but can be reprogrammed into a pro-inflammatory state with anti-cancer properties. Activation of the G protein-coupled receptor 84 (GPR84) is associated with pro-inflammatory macrophage polarization, making it a potential target for CRC therapy. This study evaluates the effects of the GPR84 agonists 6-OAU and ZQ-16 on macrophage activation and anti-cancer efficacy.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global public health issue with high mortality rates and challenges posed by drug-resistant strains, emphasizing the continued need for new therapeutic targets and effective treatment strategies. Transcriptomics is a highly effective tool for the development of novel anti-tuberculosis drugs. However, most studies focus only on changes in gene expression levels at specific time points.

View Article and Find Full Text PDF

Implants aim to restore skeletal dysfunction associated with ageing and trauma, yet infection and ineffective immune responses can lead to failure. This project characterized the microbiological and host cell responses to titanium alloy with or without electroplated metallic copper. Bacterial viability counting and scanning electron microscopy quantified and visualized the direct and indirect bactericidal effects of the Cu-electroplated titanium (Cu-Ep-Ti) against two different Staphylococcus aureus strains.

View Article and Find Full Text PDF

Exploring the shared mechanism of fatigue between systemic lupus erythematosus and myalgic encephalomyelitis/chronic fatigue syndrome: monocytic dysregulation and drug repurposing.

Front Immunol

January 2025

Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.

Background: SLE and ME/CFS both present significant fatigue and share immune dysregulation. The mechanisms underlying fatigue in these disorders remain unclear, and there are no standardized treatments. This study aims to explore shared mechanisms and predict potential therapeutic drugs for fatigue in SLE and ME/CFS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!