Cereal crops have been the primary targets for improvement by genetic transformation because of their worldwide importance for human consumption. For a long time, many of these important cereals were difficult to genetically engineer, mainly as a result of their inherent limitations associated with the resistance to Agrobacterium infection and their recalcitrance to in vitro regeneration. The delivery of foreign genes to rice plants via Agrobacterium tumefaciens has now become a routine technique. However, there are still serious handicaps with Agrobacterium-mediated transformation of other major cereals. In this paper, we review the pioneering efforts, existing problems and future prospects of Agrobacterium-mediated genetic transformation of major cereal crops, such as rice, maize, wheat, barley, sorghum and sugarcane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2006.00209.x | DOI Listing |
BMC Plant Biol
January 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
Background: Red Actinidia arguta has recently become highly popular because of its red appearance resulting from anthocyanin accumulation, and has gradually become an important breeding direction. However, regulators involved in anthocyanin biosynthesis have not been fully characterized in A. arguta.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
Carnosol (CO) and carnosic acid (CA) are pharmaceutically important diterpenes predominantly produced in members of Lamiaceae, Salvia officinalis (garden sage), Salvia fruticosa and Rosmarinus officinalis. Nevertheless, availability of these compounds in plant system is very low. In an effort to improve the in planta content of these diterpenes in garden sage, SmERF6 (Salvia miltiorrhiza Ethylene Responsive Factor 6) transcription factor was expressed heterologously.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!