A mutant of Thermobifida fusca ATCC 27730 was used for cutinase production. Acetate was the most suitable carbon source for cell growth and cutinase production compared with others. The pH was one of the most important factors affecting cutinase yield and productivity. Batch cutinase fermentations by mutant Thermobifida fusca WSH04 at various pH values ranging from 7.0 to 7.9 were studied. Based on the effects of different pH values on the specific cell growth rate and specific cutinase formation rate, a two-stage pH control strategy was developed, in which the pH was set at 7.3 for the first 20 h, and switched to 7.6 afterwards. By applying this two-stage pH control strategy for cutinase fermentation, the maximal cutinase activity reached 19.8 U/mL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.200600122 | DOI Listing |
J Environ Manage
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:
Polybutylene succinate (PBS), a biodegradable plastic, can be used as an alternative to traditional plastics to effectively solve the growing plastic pollution. Although PBS is theoretically completely biodegradable, slow degradation remains a problem in practical applications, leading to the possibility of environmental pollution. In this study, after the PBS degradation ability of the fungus Paraphoma chrysanthemicola was determined, a P.
View Article and Find Full Text PDFSci Rep
January 2025
Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122 China. Electronic address:
The substantial accumulation of polyethylene terephthalate (PET) plastic waste in the environment has exacerbated the issue of plastic pollution. The biodegradation of PET plastics using biological enzymes has garnered considerable attention due to its efficiency and environmentally friendly nature. Nevertheless, the low binding affinity of PET plastics presents a significant limitation to the application of biocatalysts in their degradation.
View Article and Find Full Text PDFBioresour Technol
February 2025
School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:
Biodegradation, particularly via enzymatic degradation, has emerged as an efficient and eco-friendly solution for Poly (ethylene terephthalate) (PET) pollution. The production of PET hydrolases plays a role in the large-scale enzymatic degradation. However, an effective variant, 4Mz, derived from Thermobifida fusca cutinase (Tfu_0883), was previously associated with a significant reduction in yield when compared to the wild-type enzyme.
View Article and Find Full Text PDFJ Hazard Mater
February 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!