The mechanism and functional significance of XIAP and Mcl-1 down-regulation in human leukemia cells exposed to the histone deacetylase inhibitor vorinostat and the cyclin-dependent kinase inhibitor flavopiridol was investigated. Combined exposure of U937 leukemia cells to marginally toxic concentrations of vorinostat and flavopiridol resulted in a marked increase in mitochondrial damage and apoptosis accompanied by pronounced reductions in XIAP and Mcl-1 mRNA and protein. Down-regulation of Mcl-1 and XIAP expression by vorinostat/flavopiridol was associated with enhanced inhibition of phosphorylation of RNA polymerase II and was amplified by caspase-mediated protein degradation. Chromatin immunoprecipitation analysis revealed that XIAP and Mcl-1 down-regulation were also accompanied by both decreased association of nuclear factor-kappaB (XIAP) and increased E2F1 association (Mcl-1) with their promoter regions, respectively. Ectopic expression of Mcl-1 but not XIAP partially protected cells from flavopiridol/vorinostat-mediated mitochondrial injury at 48 h, but both did not significantly restored clonogenic potential. Flavopiridol/vorinostat-mediated transcriptional repression of XIAP, Mcl-1-enhanced apoptosis, and loss of clonogenic potential also occurred in primary acute myelogenous leukemia (AML) blasts. Together, these findings indicate that transcriptional repression of XIAP and Mcl-1 by flavopiridol/vorinostat contributes functionally to apoptosis induction at early exposure intervals and raise the possibility that expression levels may be a useful surrogate marker for activity in current trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-06-0562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!