The involvement of vascular fibroblasts (FBs) and smooth muscle (SM)-like cells in physiological and pathological processes in large vessels (intimal hyperplasia) and microvessels (capillary arterialization), and the realization that these cells are exposed to interstitial flow shear stress (SS), motivate this study of SS on FB migratory activity. Rat adventitial FBs were grown to either 30-50% confluence (subconfluent FBs; SFBs) or full confluence (confluent FBs; CFBs) in culture. Immunofluorescence and Western blotting assays were conducted to evaluate the expression of two phenotype markers: SM alpha-actin and SM myosin heavy chain (MHC). Both assays indicated a significant increase in SM alpha-actin expression in CFBs compared with SFBs, suggesting a phenotype difference between the two cell populations. SFBs and CFBs both expressed minimal SM MHC. Both cell populations were seeded on Matrigel-coated cell culture inserts and exposed to 4 h of either 1 or 20 dyn/cm(2) SS via a rotating disk apparatus in the presence of the chemoattractant platelet-derived growth factor-BB to quantify the effect of SS on SFB and CFB migration. Four hours of 20 dyn/cm(2) SS significantly enhanced SFB migration while it suppressed CFB migratory activity. Four hours of 1 dyn/cm(2) SS did not significantly alter either SFB or CFB migration levels. Because of the distinct migratory responses of SFBs and CFBs in response to SS, phenotype modulation appears to be one way to regulate their involvement in both physiological and pathological remodeling processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00578.2006 | DOI Listing |
Metabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
Background: Left ventricular assist device (LVAD) has been widely used as an alternative treatment for heart failure, however, aortic regurgitation is a common complication in patients with LVAD support. And the O-A angle (the angle between LVAD outflow graft and the aorta) is considered as a vital factor associated with the function of aortic valve. To date, the biomechanical effect of the O-A angle on the aortic valve remains largely unknown.
View Article and Find Full Text PDFSoft Matter
January 2025
James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
We measure the response of open-cell polyurethane foams filled with a dense suspension of fumed silica particles in polyethylene glycol at compression speeds spanning several orders of magnitude. The gradual compressive stress increase of the composite material indicates the existence of shear rate gradients in the interstitial suspension caused by wide distributions in pore sizes in the disordered foam network. The energy dissipated during compression scales with an effective internal shear rate, allowing for the collapse of three data sets for different pore-size foams.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA.
This research demonstrates a systematic curve fitting approach for acquiring parametric values of hyperelastic constitutive models for both healthy and enzymatically mediated degenerated cartilage to facilitate finite element modeling of cartilage. Several widely used phenomenological hyperelastic constitutive models were tested to adequately capture the changes in cartilage mechanics that vary with the differential/unequal abundance of matrix metalloproteinases (MMPs). Trauma and physiological conditions result in an increased production of collagenases (MMP-1) and gelatinases (MMP-9), which impacts the load-bearing ability of cartilage by significantly deteriorating its extracellular matrix (ECM).
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
Laboratoire d'Imagerie Biomédicale (LIB), Institut National de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Sorbonne Université, Paris, France.
Atrial fibrillation (AF) is characterized by rapid and irregular contraction of the left atrium (LA). Impacting LA haemodynamics, this increases the risk of thrombi development and stroke. Flow conditions preceding stroke in these patients are not well defined, partly due the limited resolution of 4D flow magnetic resonance imaging (MRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!