Intestinal inflammation downregulates smooth muscle CPI-17 through induction of TNF-alpha and causes motility disorders.

Am J Physiol Gastrointest Liver Physiol

Dept. of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The Univ. of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.

Published: May 2007

Motility disorders are frequently observed in intestinal inflammation. We previously reported that in vitro treatment of intestinal smooth muscle tissue with IL-1beta decreases the expression of CPI-17, an endogenous inhibitory protein of smooth muscle serine/threonine protein phosphatase, thereby inhibiting contraction. The present study was performed to examine the pathophysiological importance of CPI-17 expression in the motility disorders by using an in vivo model of intestinal inflammation and to define the regulatory mechanism of CPI-17 expression by proinflammatory cytokines. After the induction of acute ileitis with 2,4,6,-trinitrobenzensulfonic acid, CPI-17 expression declined in a time-dependent manner. This decrease in CPI-17 expression was parallel with the reduction of cholinergic agonist-induced contraction of smooth muscle strips and sensitivity of permeabilized smooth muscle fibers to Ca(2+). Among the various proinflammatory cytokines tested, TNF-alpha and IL-1beta were observed to directly inhibit CPI-17 expression and contraction in cultured rat intestinal tissue. Moreover, both TNF-alpha and IL-1beta inhibited CPI-17 expression and contraction of smooth muscle tissue isolated from wild-type and IL-1alpha/beta double-knockout mice. However, IL-1beta treatment failed to inhibit CPI-17 expression and contraction in TNF-alpha knockout mice. In beta-escin-permeabilized ileal tissues, pretreatment with anti-phosphorylated CPI-17 antibody inhibited the carbachol-induced Ca(2+) sensitization in the presence of GTP. These findings suggest that CPI-17 was downregulated during intestinal inflammation and that TNF-alpha plays a central role in this process. Downregulation of CPI-17 may play a role in motility impairments in inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00315.2006DOI Listing

Publication Analysis

Top Keywords

cpi-17 expression
28
smooth muscle
24
intestinal inflammation
16
cpi-17
12
motility disorders
12
expression contraction
12
muscle tissue
8
expression
8
proinflammatory cytokines
8
contraction smooth
8

Similar Publications

Objective: Protein kinase C (PKC) has been implicated in the increased contraction of human airway smooth muscle cells (HASMCs) in asthma. Using the three-dimensional collagen gel contraction system, the study aimed to determine the effects of LY333531, a specific inhibitor of the PKC-β isoform, on the contraction of tumor necrosis factor (TNF)-α-sensitized HASMCs.

Methods: Cultured HASMCs were divided into five groups: the control group received no treatment, and the cells in the TNF-α group were sensitized with 10 ng/mL TNF-α for 48 h, while TNF-α was administered to sensitize HASMCs in the presence of 0.

View Article and Find Full Text PDF

Th2 cytokine signaling through IL-4Rα increases eotaxin-3 secretion and tension in human esophageal smooth muscle.

Am J Physiol Gastrointest Liver Physiol

January 2024

Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, United States.

In esophageal epithelial cells in eosinophilic esophagitis (EoE), Th2 cytokines (IL-4, IL-13) signal through IL-4Rα, activating JAK to increase eotaxin-3 secretion, which draws eosinophils into the mucosa. We explored whether Th2 cytokines also might stimulate eotaxin-3 secretion and increase tension in esophageal smooth muscle (ESM), which might impair esophageal distensibility, and whether those events could be blocked by proton pump inhibitors (PPIs) or agents that disrupt IL-4Rα signaling. We established human ESM cell cultures from organ donors, characterizing Th2 cytokine receptor and P-type ATPase expression by qPCR.

View Article and Find Full Text PDF

Protease-activated receptor-1 (PAR1) is highly expressed in murine colonic smooth muscles. Responses to PAR1 activation are complex and result from responses in multiple cell types. We investigated whether PAR1 responses are altered in inflamed colon induced by dextran sodium sulfate (DSS)-treatment.

View Article and Find Full Text PDF

Fasudil is reported to be effective at protecting against ischaemic diseases, and at augmenting axon growth. In this study, we aim to evaluate its efficacy in promoting flap survival and reinnervation. Ninety-two Institute of Cancer Research (ICR) mice were used and divided into the control, Fasudil, LY294002, Fasudil+LY294002 groups, receiving a daily intraperitoneal injection of normal saline, Fasudil (10 mg/kg), LY294002 (5 mg/kg), and Fasudil (10 mg/kg) + LY294002 (5 mg/kg), respectively.

View Article and Find Full Text PDF

Alternative splicing of exon24 (E24) of myosin phosphatase targeting subunit 1 (Mypt1) by setting sensitivity to nitric oxide (NO)/cGMP-mediated relaxation is a key determinant of smooth muscle function. Here we defined expression of myosin phosphatase (MP) subunits and isoforms by creation of new genetic mouse models, assay of human and mouse tissues, and query of public databases. A -LacZ reporter mouse revealed that transcription is turned on early in development during smooth muscle differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!