Evolutionary history of 7SL RNA-derived SINEs in Supraprimates.

Trends Genet

Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.

Published: April 2007

The evolutionary relationships of 7SL RNA-derived SINEs such as the primate Alu or the rodent B1 elements have hitherto been obscure. We established an unambiguous phylogenetic tree for Supraprimates, and derived intraordinal relationships of the 7SL RNA-derived SINEs. As well as new elements in Tupaia and primates, we also found that the purported ancestral fossil Alu monomer was restricted to Primates, and provide here the first description of a potential chimeric promoter box region in SINEs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2007.02.002DOI Listing

Publication Analysis

Top Keywords

7sl rna-derived
12
rna-derived sines
12
relationships 7sl
8
evolutionary history
4
history 7sl
4
sines
4
sines supraprimates
4
supraprimates evolutionary
4
evolutionary relationships
4
sines primate
4

Similar Publications

Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition.

View Article and Find Full Text PDF

elements are non-autonomous Short INterspersed Elements (SINEs) derived from the gene that are present at over one million copies in human genomic DNA. mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support retrotransposition.

View Article and Find Full Text PDF

Detection of a 7SL RNA-derived small non-coding RNA using Molecular Beacons and in cells.

Biol Chem

October 2023

Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany.

Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP).

View Article and Find Full Text PDF

Molecular detection of 7SL-derived small RNA is a promising alternative for trypanosomosis diagnosis.

Transbound Emerg Dis

November 2020

ANSES, Unité PhEED, Laboratoire de santé animale, site de Normandie, RD675, Goustranville, France.

Equine trypanosomosis comprises different parasitic diseases caused by protozoa of the subgenus Trypanozoon: Trypanosoma equiperdum (causative agent of dourine), Trypanosoma brucei (nagana) and Trypanosoma evansi (surra). Due to the absence of a vaccine and the lack of efficacy of the few available drugs, these diseases represent a major health and economic problem for international equine trade. Development of affordable, sensitive and specific diagnostic tests is therefore crucial to ensure the control of these diseases.

View Article and Find Full Text PDF

Background: Short interspersed elements (SINEs) are ubiquitous components of eukaryotic genomes. SINEs are composite transposable elements that are mobilized by non-long terminal repeat (non-LTR) retrotransposons, also called long interspersed elements (LINEs). The 3' part of SINEs usually originated from that of counterpart non-LTR retrotransposons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!