A silica monolith column (Merck Chromolith, 100 mm x 4.6 mm) has been coated with Dionex AS9-SC latex nanoparticles to convert the column into an anion-exchange stationary phase. For comparison purposes, a reversed-phase silica monolith was also converted into an anion-exchange column by coating with the cationic surfactant didodecyldimethylammonium bromide (DDAB). Separations of common inorganic anions were carried out using 7.5 or 5.0 mM 4-hydroxybenzoic acid at pH 7.0 along with suppressed conductivity detection. Direct comparisons were then made between the two columns in terms of selectivity, efficiency and stability. The latex-coated column was on average 50% more efficient than the DDAB-coated column. A 10% decrease in retention times was observed on the DDAB column over 11 h of continuous eluent flow, while the latex coating exhibited <1% change in retention even after 2.5 months of periodic use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2007.01.098 | DOI Listing |
Sci Rep
January 2025
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
In this research, the effect of different plasticizers with different amounts on the properties of monolithic alumina-based refractories has been investigated. All samples were fired at 1100 °C and 1550 °C. In order to evaluate the desired properties, first the rheological properties of the samples were examined, and then for further investigations, loss on ignition (LOI), percentage of permanent linear changes (PLC), apparent porosity (AP), bulk density (BD) and cold crushing strength (CCS) tests were used.
View Article and Find Full Text PDFLangmuir
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.
View Article and Find Full Text PDFACS Nano
January 2025
Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.
In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Türkiye, Turkey.
Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.
Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!