Equine beta-lactoglobulin forms a compact intermediate at an acidic pH (A state). It also forms an expanded and helical conformation at low temperatures (C state). The structure of a single disulfide mutant C66A/C160A is similar to the A state in the presence of salts, while it is similar to the C state at low anion concentrations. We have investigated the temperature-dependent change in the secondary structure using circular dichroism and proline scanning mutagenesis. At low anion concentrations, the helical content increased linearly as temperature decreased. In the presence of salts, the A state was cooperatively transformed into the C state at low temperatures. This suggests the importance of hydrophobic interactions for stabilizing the A state. Peptides encompassing native-like and non-native alpha-helices were synthesized to investigate the interactions responsible for helix formation in the A and C states. These did not form stable helices, indicating that not only the helices in the A state but also the helices in the C state are stabilized by long-range interactions. A longer fragment, CHIBL, which encompasses the structured region in the A and C states, showed a helical structure. Proline-substituted mutants of CHIBL showed CD spectral changes similar to the corresponding mutants of the full-length protein in the C state. Therefore, CHIBL has a structure similar to the corresponding region of the full-length protein in the C state. This result indicates that interactions responsible for helix formation in the C state reside in the sequence of CHIBL, and that the sequences outside CHIBL are essential for secondary structure formation in the A state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2007.01.053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!