The reversible conversion between D-glucose 6-phosphate and D-fructose 6-phosphate catalyzed by yeast phosphoglucoisomerase was studied by phase sensitive two-dimensional 13C-[1H] EXSY NMR spectroscopy at 150.869 and 125.759 MHz, using 13C-enriched substrates in the C2 position of the D-hexose 6-phosphates. The shape of the build-up curves of the cross-peaks associated with the 13C2 resonances of the alpha- and beta-anomers of both D-[2-13C]glucose 6-phosphate and D-[2-13C]fructose 6-phosphate reveals that phosphoglucoisomerase selectively catalyzes the reversible conversion between alpha-D-[2-13C]glucose 6-phosphate and beta-D-[2-13C]fructose 6-phosphate. Quantitative analysis of the build-up curves by three different methods allowed us to conclude that phosphoglucoisomerase not only selectively channels the latter isomerization but also considerably accelerates the anomerization of both D-hexose 6-phosphates. The rate constants of anomerization were indeed much higher in the presence than in the absence of enzyme. The major finding in the present study consists in the anomeric specificity of phosphoglucoisomerase toward the beta-anomer of D-fructose 6-phosphate both as a substrate and a product, contrary to previous proposals. This finding supports recent evidence suggesting the direct channelling of beta-D-fructose 6-phosphate from phosphoglucoisomerase to phosphofructokinase.

Download full-text PDF

Source

Publication Analysis

Top Keywords

anomeric specificity
8
exsy nmr
8
reversible conversion
8
6-phosphate
8
d-fructose 6-phosphate
8
d-hexose 6-phosphates
8
build-up curves
8
phosphoglucoisomerase selectively
8
phosphoglucoisomerase
6
dual anomeric
4

Similar Publications

Photoelectrocatalytic degradation of hyaluronic acid and regulation effects of its degradation products on gut microbiota in vitro.

Int J Biol Macromol

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Hyaluronic acid (HA) has multiple biological activities which are closely related to its molecular weight. In the present study, the photoelectrocatalytic method was established for HA degradation and the influences of bias potentials, HO additions and reaction times on the degradation results were investigated to optimize the reaction condition. Moreover, a series of analysis methods, such as FT-IR and NMR were used to analyze chemical compositions of the degradation products, revealing that photoelectrocatalytic degradation did not damage the structural blocks of HA obviously.

View Article and Find Full Text PDF

Protein A075L is a β-xylosyltransferase that participates in producing the core of the N-glycans found in VP54, the major viral capsid protein of Paramecium bursaria chlorella virus-1 (PBCV-1). In this study, we present an X-ray crystallographic analysis of the apo form of A075L, along with its complexes with the sugar donor and with a trisaccharide acceptor. The protein structure shows a typical GT-B folding, with two Rossmann-like fold domains, in which the acceptor substrate binds to the N-terminal region, and the nucleotide-sugar donor binds to the C-terminal region.

View Article and Find Full Text PDF

Although all hexose sugars share the same chemical formula, CHO, subtle differences in their stereochemical structures lead to their various biological roles. Due to their prominent role in metabolism, hexose sugars are commonly found in nanoconfined environments. The complexity of authentic nanoconfined biological environments makes it challenging to study how confinement affects their behavior.

View Article and Find Full Text PDF

Enzyme Machinery for Bacterial Glucoside Metabolism through a Conserved Non-hydrolytic Pathway.

Angew Chem Int Ed Engl

October 2024

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.

The flexible acquisition of substrates from nutrient pools is critical for microbes to prevail in competitive environments. To acquire glucose from diverse glycoside and disaccharide substrates, many free-living and symbiotic bacteria have developed, alongside hydrolysis, a non-hydrolytic pathway comprised of four biochemical steps and conferred from a single glycoside utilization gene locus (GUL). Mechanistically, this pathway integrates within the framework of oxidation and reduction at the glucosyl/glucose C3, the eliminative cleavage of the glycosidic bond and the addition of water in two consecutive lyase-catalyzed reactions.

View Article and Find Full Text PDF

β-N-acetylglucosaminidase (GlcNAcase) is an essential biocatalyst in chitin assimilation by marine Vibrio species, which rely on chitin as their main carbon source. Structure-based phylogenetic analysis of the GlcNAcase superfamily revealed that a GlcNAcase from Vibrio campbellii, formerly named V. harveyi, (VhGlcNAcase) belongs to a major clade, Clade A-I, of the phylogenetic tree.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!