The purpose of this study was to determine ultrasonically the changes in elastic modulus of demineralized adhesive-infiltrated dentin. Dentin disks were obtained from bovine incisors and shaped into a rectangular form. The specimens were immersed in single-step self-etch adhesives, then stored in distilled water and run through thermal cycles between 5 and 60 degrees C. The longitudinal and shear wave sound velocities and the elastic modulus were determined using ultrasonic equipment composed of a pulser-receiver, transducers, and an oscilloscope. After 24 h of storage, the elastic modulus of mineralized dentin was 16.9 GPa and that of demineralized dentin was 2.1 GPa. The immersion of demineralized dentin in adhesives significantly increased the elastic modulus to 3.3-5.9 GPa. After 30,000 thermal cycles, the elastic modulus of dentin was 32.4 GPa, whereas that of demineralized adhesive infiltrated dentin was 3.1-4.1 GPa. Thermal stresses did not cause adhesive-infiltrated demineralized dentin to deteriorate, as measured by elastic modulus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0722.2007.00425.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!