Balancing the double-edged sword: metal ion homeostasis and the ulcer bug.

Curr Med Chem

Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.

Published: March 2007

The essential nature of many metals is counterbalanced by the toxic effect that they can exert on both the eukaryotic and prokaryotic cell when not properly controlled. As such, virtually all organisms have developed regulatory systems that are required to maintain metal ion homeostasis. Helicobacter pylori is arguably the most successful bacterial pathogen in the world; the bacterium colonizes more than 50% of the world's population. H. pylori lives in the acidic environment of the stomach and causes a persistent infection that results in disease sequelae such as gastritis, iron-deficiency anemia, ulcer disease and gastric cancer. A requirement of colonization is that the bacterium successfully competes with host cells for available metal ions. As such, it is perhaps no surprise that several crucial colonization factors utilize metal as an essential cofactor. Recent investigations into the absolute requirement for different metal ions and the need to manage their use have shown that metal ion homeostasis is achieved by H. pylori through the utilization of an intricate regulatory cascade that ensures metal uptake without toxic side effects. Herein we discuss this cascade, the role that individual metal ions play in H. pylori colonization and disease and the possibility that these metal homeostasis cascade components may serve as good targets for rational drug design to eradicate H. pylori infection.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986707779941069DOI Listing

Publication Analysis

Top Keywords

metal ion
12
ion homeostasis
12
metal ions
12
metal
9
pylori
5
balancing double-edged
4
double-edged sword
4
sword metal
4
homeostasis
4
homeostasis ulcer
4

Similar Publications

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Contamination of water by heavy toxic metal ions such as (e.g., Cr, Mn, Ni, Cu, Zn, As Pb, Cd, and Ag) can lead to serious environmental and human health problems because of their acute and chronic toxicity to the biological system.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!